Sideways Looks at the Moon Like You’ve Never Seen it Before

An oblique look at the Moon from the Lunar Reconnaissance Orbiter. Credit: Moon Zoo, NASA/GSFC/Arizona State University

[/caption]

The Zooites working at the Moon Zoo citizen science project have uncovered some very unique oblique views of the Moon taken by the Lunar Reconnaissance Orbiter. Occasionally, LRO takes “sideways glances” at the Moon instead of looking straight down like the spacecraft normally does. The Moon doesn’t really look like this close up, because these images aren’t scaled correctly (the width and height pixel scales are different by five times, the Zooites say in the Moon Zoo Forum), but they provide a distinctive look at the lunar surface, and things like craters on the side of a hill, — or perhaps an entrance to a cave — show up better than in normal images. Have fun looking at some more of these images below, or on the Moon Zoo Forum.

And don’t forget, if you aren’t working on at least one of the Zooniverse citizen science projects, you are missing out on mountains of fun!

Another oblique look at the Moon from the Lunar Reconnaissance Orbiter. Credit: Moon Zoo, NASA/GSFC/Arizona State University
LRO image M144564740RC. Credit: Moon Zoo, NASA/GSFC/Arizona State University.
LRO image M144653115RC. Credit: Moon Zoo, NASA/GSFC/Arizona State University.

Several Student-Led Experiments to Fly on Endeavour

Several student experiments will travel with the more famous Alpha Magnetic Spectrometer-02 on the shuttle Endeavour. Image Credit: NASA.gov

[/caption]CAPE CANAVERAL – STS-134, the final flight of the space shuttle Endeavour – is set to carry several experiments of students from the middle school, high school and collegiate levels. Two of these payloads are sponsored by the NASA Florida Space Grant Consortium.

The first experiment is one that could provide some guidance on future long-duration space flight missions, it deals with seed germination. As missions take astronauts further and further away from Earth, they will need to be able to produce their own food. Learning everything possible about the effects of micro-gravity on seeds therefore is viewed as relevant and important research.

Student Spaceflight Experiments Program is working to ensure that the shuttle program maximizes its potential as a tool for education. Image Credit: SSEP

“Crystal Lake Middle Schools’ students and staff members are grateful that the Florida Space Grant Consortium has provided funding that will allow one of our student experiments to fly aboard the Space Shuttle Endeavour in low Earth orbit for 14 days,” said the Magnet Programs Coordinator for Crystal Lake Middle School, Lenecia McCrary. “The students entered a school-wide competition that involved proposing and designing real and practical experiments. The chosen experiment deals with investigating the effects of micro-gravity on apple seed germination.”

A little higher up on the educational ladder is the STEM Bar experiment being flown on STS-134. High school students Mikayla and Shannon Diesch won the 2010 Conrad Foundation Spirit of Innovation Award and will be at the launch watching as Endeavour takes their newly developed STEM Bar to the International Space Station. The STEM Bar was developed using NASA’s food safety standards and certified to fly on STS-134.

Another experiment, one comprised of squid embryos is being spearheaded by the University of Florida and will research the physiological impact of the micro-gravity environment on the animal’s growth and development.
“The Squids in Space project is a cohesive effort in which the full range of NASA Florida Space Grant Consortium supported categories work together on an experiment destined to fly on what will be the last flight of space shuttle Endeavour,” said Florida Space Grant Consortium Director Jaydeep Mukherjee. “This team, which is composed of Florida colleges and high school students and led by University of Florida PhD research scientist Jamie Foster, will connect the three tiers of education in an experiment studying the effects of microgravity on squid embryos.”

This experiment rack will allow astronauts to study how certain bacteria within squid embryos change in the microgravity environment. Photo Credit: NASA FSGC

The inclusion of these student experiments on board Endeavour is viewed by those sponsoring and supporting these student-led experiments as evidence of NASA’s commitment to educational outreach. NASA has to maximize every square inch of space on the orbiters to stock up the space station for the post-shuttle era. As such, clearing room for these experiments highlights is viewed as an expression of the high value that the space agency places on education. After the launch of Endeavour only a single shuttle flight remains in the program, STS-135 which is slated for liftoff on June 28 on space shuttle Atlantis.

Students from the University of Florida are sending squid embryos into space on space shuttle Endeavour's final mission. Photo Credit: NASA FSGC

Spectacular Galaxies Dancing Towards Destruction

Image of NGC 6872 (left) and companion galaxy IC 4970 (right) locked in a tango as the two galaxies gravitationally interact. The galaxies lie about 200 million light-years away in the direction of the constellation Pavo (the Peacock). Image credit: Sydney Girls High School Astronomy Club, Travis Rector (University of Alaska, Anchorage), Ángel López-Sánchez (Australian Astronomical Observatory/Macquarie University), and the Australian Gemini Office.

[/caption]

More than just another pretty picture? I’ll say! This beautiful image of the galaxy pair NGC 6872 and IC 4970 was part of a competition for high school students in Australia to obtain scientifically useful (and aesthetically pleasing) images using the Gemini Observatory. The winners were students from the Sydney Girls High School Astronomy Club in central Sydney, who proposed that Gemini investigate these two galaxies that are embraced in a graceful galactic dance that, — as the team described in the essay to support their entry — “…will also serve to illustrate the situation faced by the Milky Way and the Andromeda galaxy in millions of years.”

We can only hope we look this pretty millions of years from now!

This image shows what happens when galaxies interact, and how the gravitational forces distort and tear away at their original structure. Spiral galaxies can have their arms elongate out to enormous distances: in NGC 6872, the arms have been stretched out to span hundreds of thousands of light-years—many times further than the spiral arms of our own Milky Way galaxy. Over hundreds of millions of years, NGC 6872’s arms will fall back toward the central part of the galaxy, and the companion galaxy (IC 4970) will eventually be merged into NGC 6872.

But that will be another pretty picture, as galaxy mergers often leads to a burst of new star formation. Already, the blue light of recently created star clusters dot the outer reaches of NGC 6872’s elongated arms. Dark fingers of dust and gas along the arms soak up the visible light. That dust and gas is the raw material out of which future generations of stars could be born.

Members of the SGHS Astronomy Club Executive Council receiving the Gemini image on behalf of the entire club. Photo credit: Australian Gemini Office.

Learn more about the contest and the winning team at this article on the Gemini website. Also, a new contest is underway for Australian students in 2011, and more details can be found at this link.

Source: Gemini Observatory

Google Lunar X-Prize’s ‘college team’ gaining steam, attention and support

The Google Lunar X-PRIZE team, Omega Envoy, consists primarily of college students and is working to land a rover on the lunar surface. Image Credit: ESI

[/caption]
ORLANDO – The Google Lunar X-PRIZE (GLXP) recently announced the 29 official teams that will be vying for the $30 million grand prize. One group in particular stands out amongst the list however – Omega Envoy. This team is comprised primarily by college students from the University of Central Florida, working on engineering and other degrees. However, while they may be relatively young, they have drawn the attention of the media, numerous sponsors, NASA and the space industry.

NASA has inked a deal with the tiny band of potential explorers to purchase data from their spacecraft. The space agency awarded the Innovative Lunar Demonstration Data contract to Omega Envoy. This contract is worth up to $10 million. However, while this contract and the growing list of sponsors is impressive, the feat that the team is trying to accomplish is daunting. What they are attempting to do, only nations have done before.

The GLXP requires that to win, the team must safely land a robot on the lunar surface, have it travel 1,500 feet and send back both images and data to Earth. Given the fact that, to date, only the U.S. and Russia have accomplished this before – this is no small task.

Different views of Omega Envoy's proposed lunar rover. Image Credit: ESI

The Google Lunar X-PRIZE is another effort by the X-PRIZE Foundation. The impetus behind this organization is to accelerate space exploration efforts much in the same way that the Orteig Prize accelerated air travel in the 20th Century. That prize was a paltry (by today’s standards) $25,000 for the first person to fly non-stop from New York to Paris (or vice-versa). Its winner, Charles Lindbergh, would go down in history as one of the most famous aviators of all time. It is with this premise in mind that the X-PRIZE Foundation works to inspire today’s explorers and innovators.

The Omega Envoy team under Earthrise Space Inc., has been growing, gaining experience and the attention of major aerospace players - including NASA. Photo Credit: ESI

For the original Ansari X-PRIZE it took an established (if somewhat outside of the mainstream) aerospace company with years of experience to finally accomplish the objectives laid out. Scaled Composites, renowned for their kit aircraft; successfully sent a manned spacecraft into sub-orbital space, returned safely and then sent the same spacecraft, SpaceShipOne; back into space within the required two weeks.

The non-profit organization that oversees all aspects of Omega Envoy, Earthrise Space Inc. (ESI), works to provide services to private companies, government agencies, as well as educational institutions that currently have the resources to explore space and are looking for low cost products that will accomplish their requirements. They feel that this will enhance the accessibility of technology and increase educational interest amongst the workforce that drives the space.

“Aside from the GLXP, ESI intends to continuously schedule lunar deliveries for scientific payloads and robotics,” said Earthrise Space Institute’s Project Director Ruben Nunez. “Other mission objectives for Omega Envoy entail the visual feedback of a scientific payload that will analyze the lunar terrain.”

This illustration displays what Omega Envoy's lunar lander craft might look like. Image Credit: ESI

Through the Google Lunar X-PRIZE and government contracts such as the contract with NASA, it is hoped that this initiative will enable the creation of a new economic system to support lunar exploration as well as Technology Readiness Level (TRL) advancement of innovative, commercial space systems.

“I am fortunate in that I had the opportunity to witness what Omega Envoy is capable of producing when I field tested their prototype rover during the 2009 FMARS (Flashline Mars Arctic Research Station) Expedition,” said Joseph Palaia 4Frontiers’ Vice President. “There is little doubt in my mind that this team is fully capable of accomplishing the objectives laid out in the GLXP.”

One of the Omega Envoy team members, Joseph Palaia; took a prototype of the rover to be field tested during the 2009 FMARS Expedition. Photo Credit: Joseph Palaia

Look to Orion and Help Measure the Darkness of Your Night Sky

Orion as seen from Easter Island. Credit: Wally Pacholka / AstroPics.com / TWAN. Used by permission.

[/caption]

How dark are your skies? GLOBE at Night wants to know! Join the 6th annual worldwide GLOBE at Night campaign, which is going on right now in the northern hemisphere. “We are running two campaigns this year, from February 22nd to March 6th and from March 22nd to April 4th in the northern hemisphere and March 24th to April 6th in the southern hemisphere,” said Rob Sparks from the National Optical Astronomy Observatory, which is one of the sponsors for this year’s campaign.

By participating in the international star-hunting campaign, you will help address the problems of light pollution locally as well as globally. More participants are needed this year, so sign up to be a citizen scientist today!

Light pollution is a serious and growing global concern. With half of the world’s population now living in cities, many urban dwellers have never experienced the wonder of pristinely dark skies and perhaps, maybe never will. But light pollution is also a concern in areas of safety, energy conservation, cost, health and effects on wildlife, as well as our ability to view the stars.

But this is also one of the easiest environmental problems you can address on local levels.

GLOBE at Night is a wonderful way for everyone around the world to participate to raise public awareness of the impact of artificial lighting on local environments. This event encourages everyone – students, educators, dark sky advocates and the general public – to measure the darkness of their local skies and contribute their observations online to a world map.

The campaign is easy and fun to do, and as in previous years, there are just five easy steps to participate. But this year, there is now an app for that, where participants can submit their measurements in real time if they have a smart phone or tablet.

“There is now a mobile website to submit data,” Sparks told Universe Today. “It will take the GPS data, time and date from your phone and has a cool little graphic to help you determine the brightness of the sky. It even had a red screen feature for night use.” The app can be found at this link.

To participate, you will match the appearance of the constellation Orion in the first campaign (and Leo or Crux in the second campaign) with simple star maps of progressively fainter stars found. Then you submit your measurements, including the date, time, and location of your comparison. After all the campaign’s observations are submitted, the project’s organizers release a map of light-pollution levels worldwide. Over the last five annual 2-week campaigns, volunteers from more than 100 nations contributed 52,000 measurements, one third of which came from last year’s campaign.

The five easy star-hunting steps are:

1) Find your latitude and longitude.

2) Find Orion by going outside an hour after sunset (about 7-10pm local time).

3) Match your nighttime sky to one of the GLOBE at Night magnitude charts

4) Report your observation.

5) Compare your observation to thousands around the world.

Go to the GLOBE at Night website for all the details. There is even a 10-minute audio podcast on light pollution and GLOBE at Night. Or download a 45-minute powerpoint and accompanying audio. GLOBE at Night is also on Facebook and Twitter.

Be a part of GLOBE at Night and help the campaign exceed the 17,800 observations contributed last year. Your measurements will make a world of difference.

Thanks to the GLOBE at Night team for securing permission for Universe Today to post the lead image, from Wally Pacholka from AstroPics.com and TWAN (The World At Night).

Students Will Attempt to Photograph Shuttle Discovery Flight At The Edge of Space

August 2010 Launch site Warner Springs Gliderport is in the middle of this shot from the edge of space. Credit: Quest for Stars

[/caption]

From a Challenger Center press release:

If all goes according to plan, a balloon with a student-oriented payload will photograph Space Shuttle Discovery as it climbs into space from an altitude of 100,000 feet. There will also be live streaming video from the balloon itself during the mission – sent back by two regular smartphones running Google’s Android operating system.

Co-sponsored by Challenger Center for Space Science Education, this mission is one in a series of flights conducted by Quest for Stars, a California-based non-profit educational organization that uses off-the-shelf hardware and a little ingenuity to allow students to place experiments at the edge of space at exceptionally low cost.

Quest for Stars and Challenger Center for Space Science Education have now joined together to promote the use of these low cost delivery systems. This mission will be the first of what is hoped to be many future collaborations.

A helium-filled balloon carrying the “Robonaut-1” payload (not related to the Robonaut-2 that is launching on board Discovery) will be launched from a location in Florida some distance away from Kennedy Space Center. The time and location of launch will be determined by weather conditions. With a currently planned STS-133 launch time of 4:50 p.m. EST, the balloon will be launched between 3:00 – 3:50 p.m. EST so as to be in position for Discovery’s supersonic transit of the stratosphere. If there is a delay in the launch of Discovery, the team is ready to try again – several times – on subsequent days.

The balloon will rise at a rate of 800-1,000 feet per minute to an altitude of approximately 100,000 feet. After accomplishing its mission, the payload will be released and descend by parachute. After the payload descends for 15-30 minutes, a trained recovery team will retrieve the payload and download its data and imagery.

Onboard Robonaut-1 is a HD Camera Phone Satellite (PHONESAT) that will attempt to capture images of Space Shuttle Discovery as it leaves Earth for space. Multiple cameras and an on-board computer system will ensure that Discovery launch images will be captured during its ascent. Some of those photos will include logos for Quest For Stars, STS-133, Challenger Center, and Motorola. In addition, the payload contains a Motorola i290 mobile phone and a Garmin eTrex GPS system that is connected to a ham radio transmitter. The payload is designed to have multiple means of communication for backup purposes.

Live video of mission activities will also be streamed during the mission. This webcast can be watched at http://www.ustream.tv/channel/chasing-discovery, http://www.challenger.org/live, and at http://onorbit.com/suborbital.

Live video from the Robonaut-1 itself during flight will be available at http://qik.com/robonaut-1.

Updates during the mission including live tracking information during ascent and descent can be obtained by following http://twitter.com/questforstars or on Facebook at http://tinyurl.com/4hu4337.

See more information and images at OnOrbit.com

20 Million Observations by Amateur Astronomers!

Graph showing the rapidly growing number of observations in the AAVSO International Database. Courtesy AAVSO.

[/caption]Early into the celebration of its centennial year, observers of the American Association of Variable Star Observers (AAVSO) passed another milestone over the weekend, when an amateur astronomer from Belgium contributed the 20 millionth observation of a variable star on February 19, 2011.

Amateur astronomers have been recording changes in the brightness of stars for centuries. The world’s largest database is run by the AAVSO. Started in 1911, it is one of the oldest, continuously operating citizen science projects in the world.

“The long-term study of stellar brightness variation is critical to understanding how stars work and the impact they have on their surroundings. The noble efforts of the engaged AAVSO volunteers play an important role in astronomy and help expand human knowledge,” said Dr. Kevin Marvel, Executive Officer of the American Astronomical Society.

The AAVSO currently receives variable star brightness estimates from about 1,000 amateur astronomers per year. Some variable stars are bright enough to be seen with the unaided eye while others require high-tech equipment. The AAVSO also has a network of robotic telescopes available to members free of charge.

“Because some variable stars are unpredictable and/or change their brightness over long time scales, it is not practical for professional astronomers to watch them every night. Thus, amateurs were recruited to keep tabs on these stars on behalf of professionals,” Dr. Arne Henden, Director of the AAVSO, said.

The 20 millionth observation was made by Dr. Franz-Josef “Josch” Hambsch of Belgium. The observation was of GV Andromeda, member of a class of older, pulsating stars smaller than our Sun. “I like these stars because you can see their entire variation cycle in one night. There have not been many recent observations made of this particular star, so that is why I am monitoring it,” Hambsch said. Hambsch is also a member of the Belgian variable star organization, Vereniging Voor Sterrenkunde, Werkgroep Veranderlijke Sterren (VVS, WVS).

Actual light curve of GV And created from Josch Hambsh's data. One of these points is the 20 millionth observation! Courtesy AAVSO.

The process of estimating a star’s brightness can range from less than a minute to many hours per estimate, but typically takes about five minutes. At that rate, observers have invested the equivalent of about 1.67 million hours of time in collecting observations for the database. Assuming a current median salary of US$33,000, this would be the roughly equivalent to 27.5 million dollars worth of donated time if all the observations were reported today.

“The reality is these observations are invaluable. The database spans many generations and includes data that cannot be reproduced elsewhere. If an astronomer wants to know the history of a particular star, they come to the AAVSO,” Henden said.

The AAVSO’s mission is to coordinate, collect, and distribute variable star data to support scientific research and education. The AAVSO International Database is openly available to the public through their web site (www.aavso.org), where it is queried hundreds of times per day.

Historic Opportunity for Students to Participate on “Extra” Shuttle Mission

Astronaut Jeffrey Williams doing plant cells vs. microgravity experiments aboard the ISS in December 2009. Credit: NASA

[/caption]

A new opportunity for students to be part of history and fly an experiment on what could be the last space shuttle mission has been announced by the Student Spaceflight Experiments Program (SSEP) for the STS-135, the shuttle mission that might fly in June of 2011.

“We hope to get 50 communities and 100,000 students participating in the initiative which allows grade 5-14 student design of real experiments to fly aboard Atlantis, and engages entire communities,” Dr. Jeff Goldstein, the Director for the National Center for Earth and Space Science Education told Universe Today. “This is very unique opportunity for students and teachers to be part of a high visibility, keystone U.S. national STEM education program of the highest caliber.”

SSEP is a new program that launched in June 2010 by the National Center for Earth and Space Science Education in partnership with NanoRacks, LLC, a company that is working with NASA under a Space Act Agreement as part of the utilization of the International Space Station as a National Laboratory.

The company hopes to stimulate space station research by providing a very low-cost 1 kilogram platform that puts micro-gravity projects within the reach of universities and small companies, as well as elementary and secondary schools through SSEP. So, this is actually a commercial space program and not a NASA program.

This opportunity offers real research done on orbit, with students designing and proposing the experiments to fly in low Earth orbit.

Goldstein said the program is a U.S. national Science, Technology, Engineering, and Mathematics (STEM) education initiative that gives up to 3,200 students across a community—middle and high school students (grades 5-12), and/or undergraduates at 2-year community colleges (grades 13-14)—the ability to fly their own experiments in low Earth orbit, first aboard the final flights of the Space Shuttle, and then later on the International Space Station.

For the STS-134 mission, now scheduled to launch in April 2011, 16 communities were chosen to participate from 447 student team proposals. Goldstein said the 16 selected experiments are now moving through formal NASA Flight Safety review.

But the end of the shuttle mission is not the end of this program – instead it is just the beginning. “This is meant to be a gateway to Phase 2 of the program, which will allow routine access to space for students conducting experiments, said Goldstein. “SSEP was designed to engage and inspire America’s next generation of scientists and engineers through immersion in real science. We believe that ‘student as scientist’ represents the very best in science education.”

What type of experiments would be accepted? Students and teachers should discuss what biological, chemical or physical system they would like to explore with no gravity off for 10 days. Examples of experiments are seed germination cell biology, life cycles of organisms, food preservation, and crystal growth. The SSEP program will help guide the teachers through implementation of the program in their classrooms.

Each participating school district will be provided an experiment slot in an easy-to-use real microgravity research mini-laboratory flying on Space Shuttle Atlantis. The SSEP center will then guide the school districts through an experiment design competition within the grade 5-12 range, which can be conducted across a single school, or district-wide to as many as 3,200 students. Student teams then design real experiments vying for your reserved slot on this historic flight, with designs constrained by mini-laboratory operation.

Other benefits of the program include a customized Blog for students and teachers to report on their program, and a design competition for each school to have a 4-inch x 4-inch emblem that we will fly aboard the Shuttle and returned to the school.

There is uncertainty, however, whether the STS-135 mission will fly. Funding for the additional STS-135 mission was authorized by Congress on September 29, 2010, and the authorization was signed by President Obama. NASA is currently awaiting Congressional allocation of funds for STS-135. On January 20, 2011, NASA formally added STS-135 to its launch schedule. Goldstein said there is now a high probability that STS-135 will indeed fly. But when it flies is the issue.

Because of the timing of when NASA needs to have a list of material that will be used in the experiments so that they can do a flight safety review, the SSEP program needs NASA to slip the launch date from June 28, 2011 until at least August 31, 2011. They fully expect this to occur given the significant launch slips that have occurred for STS-133 and STS-134, and the conversations already taking place in NASA.

But it is now time critical for schools to be able to participate. There is a proposal submission deadline of May 12, 2011. By the end of May, the flight experiments will be selected, so that NASA can be provided with the materials list 3 months in advance of launch.

For more information see the SSEP website

Testimonials for SSEP on STS-134

Watch a video of Dr. Jeff Goldstein talking about SSEP.

Students Find Rare “Recycled” Pulsar

Alexander Snider and Hannah Mabry in GBT Control Room, Casey Thompson on-screen, during confirmation observation. CREDIT: NRAO/AUI/NSF

[/caption]

From a press release from the National Radio Astronomy Observatory:

In the constellation of Ophiuchus, above the disk of our Milky Way Galaxy, there lurks a stellar corpse spinning 30 times per second — an exotic star known as a radio pulsar. This object was unknown until it was discovered last week by three high school students. These students are part of the Pulsar Search Collaboratory (PSC) project, run by the National Radio Astronomy Observatory (NRAO) in Green Bank, WV, and West Virginia University (WVU).

The pulsar, which may be a rare kind of neutron star called a recycled pulsar, was discovered independently by Virginia students Alexander Snider and Casey Thompson, on January 20, and a day later by Kentucky student Hannah Mabry. “Every day, I told myself, ‘I have to find a pulsar. I better find a pulsar before this class ends,'” said Mabry.

When she actually made the discovery, she could barely contain her excitement. “I started screaming and jumping up and down.”

Thompson was similarly expressive. “After three years of searching, I hadn’t found a single thing,” he said, “but when I did, I threw my hands up in the air and said, ‘Yes!’.”

Snider said, “It actually feels really neat to be the first person to ever see something like that. It’s an uplifting feeling.”

As part of the PSC, the students analyze real data from NRAO’s Robert C. Byrd Green Bank Telescope (GBT) to find pulsars. The students’ teachers — Debra Edwards of Sherando High School, Leah Lorton of James River High School, and Jennifer Carter of Rowan County Senior High School — all introduced the PSC in their classes, and interested students formed teams to continue the work.

Even before the discovery, Mabry simply enjoyed the search. “It just feels like you’re actually doing something,” she said. “It’s a good feeling.”

Basics of a Pulsar CREDIT: Bill Saxton, NRAO/AUI/NSF

Once the pulsar candidate was reported to NRAO, Project Director Rachel Rosen took a look and agreed with the young scientists. A followup observing session was scheduled on the GBT. Snider and Mabry traveled to West Virginia to assist in the follow-up observations, and Thompson joined online.

“Observing with the students is very exciting. It gives the students a chance to learn about radio telescopes and pulsar observing in a very hands-on way, and it is extra fun when we find a pulsar,” said Rosen.

Snider, on the other hand, said, “I got very, very nervous. I expected when I went there that I would just be watching other people do things, and then I actually go to sit down at the controls. I definitely didn’t want to mess something up.”

Everything went well, and the observations confirmed that the students had found an exotic pulsar. “I learned more in the two hours in the control room than I would have in school the whole day,” Mabry said.

Pulsars are spinning neutron stars that sling lighthouse beams of radio waves or light around as they spin. A neutron star is what is left after a massive star explodes at the end of its normal life. With no nuclear fuel left to produce energy to offset the stellar remnant’s weight, its material is compressed to extreme densities. The pressure squeezes together most of its protons and electrons to form neutrons; hence, the name neutron star. One tablespoon of material from a pulsar would weigh 10 million tons — as much as a supertanker.

The object that the students discovered is in a special class of pulsar that spins very fast – in this case, about 30 times per second, comparable to the speed of a kitchen blender.

“The big question we need to answer first is whether this is a young pulsar or a recycled pulsar,” said Maura McLaughlin, an astronomer at WVU. “A pulsar spinning that fast is very interesting as it could be newly born or it could be a very old, recycled pulsar.”

A recycled pulsar is one that was once in a binary system. Material from the companion star is deposited onto the pulsar, causing it to speed up, or be recycled. Mystery remains, however, about whether this pulsar has ever had a companion star.

If it did, “it may be that this pulsar had a massive companion that exploded in a supernova, disrupting its orbit,” McLaughlin said. Astronomers and students will work together in the coming months to find answers to these questions.

The PSC is a joint project of the National Radio Astronomy Observatory and West Virginia University, funded by a grant from the National Science Foundation. The PSC, led by NRAO Education Officer Sue Ann Heatherly and Project Director Rachel Rosen, includes training for teachers and student leaders, and provides parcels of data from the GBT to student teams. The project involves teachers and students in helping astronomers analyze data from the GBT, a giant, 17-million-pound telescope.

Some 300 hours of observing data were reserved for analysis by student teams. Thompson, Snider, and Mabry have been working with about 170 other students across the country. The responsibility for the work, and for the discoveries, is theirs. They are trained by astronomers and by their teachers to distinguish between pulsars and noise. The students’ collective judgment sifts the pulsars from the noise.

All three students had analyzed thousands of data plots before coming upon this one. Casey Thompson, who has been with the PSC for three years, has analyzed more than 30,000 plots.

“Sometimes I just stop and think about the fact that I’m looking at data from space,” Thompson said. “It’s really special to me.”

In addition to this discovery, two other astronomical objects have been discovered by students. In 2009, Shay Bloxton of Summersville, WV, discovered a pulsar that spins once every four seconds, and Lucas Bolyard of Clarksburg, WV, discovered a rapidly rotating radio transient, which astronomers believe is a pulsar that emits radio waves in bursts.

Those involved in the PSC hope that being a part of astronomy will give students an appreciation for science. Maybe the project will even produce some of the next generation of astronomers. Snider, surely, has been inspired.

“The PSC changed my career path,” confessed Thompson. “I’m going to study astrophysics.”
Snider is pleased with the idea of contributing to scientific knowledge. “I hope that astronomers at Green Bank and around the world can learn something from the discovery,” he said.

Mabry is simply awed. “We’ve actually been able to experience something,” she said.

The PSC will continue through 2011. Teachers interested in participating in the program can learn more at this link.

Become an Exoplanet Hunter With Newest Zooniverse Citizen Science Project

Artist's impression of an extrasolar planet. Image credit: CfA

[/caption]

You knew it was only a matter of time until the hunt for extrasolar planets joined the Zooniverse family of Citizen Science projects. And the time has now arrived for your chance to make one of the biggest discoveries of the 21st century by finding other planets out there in the Universe.

Planet Hunters is the latest addition to the Zooniverse, and users will help scientists analyze data taken by NASA’s Kepler mission, the biggest, badest exoplanet hunting telescope in space. The project goes live on December 16 at http://www.planethunters.org.


“The Kepler mission has given us another mountain of data to sort through,” said Kevin Schawinski, a Yale University astronomer and Planet Hunters co-founder. Schawinski was one of the original forces behind Galaxy Zoo, the citizen science project that started it all back in 2007, which enlisted hundreds of thousands of Web users round the world to help sort through and classify a million images of galaxies taken by a robotic telescope.

The Kepler telescope has been in space since 2009, continually monitoring nearly 150,000 stars in the constellations Cygnus and Lyra, recording their brightness over time. In June of this year, the Kepler team announced they had found over 750 exoplanet candidates in just the first 43 days of the spacecraft’s observations.

They also just announced they will make an early release of a complete 3 months of observations early in 2011, which will contain light curves for approximately 165,000 stars, most of which are late-type Main Sequence stars.

“The Kepler mission will likely quadruple the number of planets that have been found in the last 15 years, and it’s terrific that NASA is releasing this amazing data into the public domain,” said Debra Fischer, a Yale astronomer and leading exoplanet hunter.

Although Planet Hunters is not tied directly to the Kepler mission, the website will serve as a complement to the work being done by the Kepler team to analyze the data, the team said.

Granted, the Citizen Scientists looking for extrasolar planets will be doing a search akin to looking for a needle in a haystack. But its one of the most exciting needles to be searching for.

Because of the huge amount of data being made available by Kepler, astronomers rely on computers to help them sort through the data and search for possible planet candidates. “But computers are only good at finding what they’ve been taught to look for,” said Meg Schwamb, another Yale astronomer and Planet Hunters co-founder, “whereas the human brain has the uncanny ability to recognize patterns and immediately pick out what is strange or unique, far beyond what we can teach machines to do.”

Galaxy Zoo project has shown how successful this concept of using a network of global volunteers can be, as the Citizen Scientists has helped the Galaxy Zoo team publish over 20 papers about galaxy shapes and distributions, as well as making some unusual discoveries, like Hanny’s Voorwerp.

To participate, you don’t need to have any astronomical or exoplanet expertise. When users log on to the Planet Hunters website, they’ll be asked to answer a series of simple questions about one of the stars’ light curves — a graph displaying the amount of light emitted by the star over time — to help the Yale astronomers determine whether it displays a repetitive dimming of light, identifying it as an exoplanet candidate.

And exoplanet research is one of the hottest topics in astronomy today. Over 500 planets have been found orbiting other stars since 1995. Most of these are large, Jupiter-like planets, but astronomers are refining their searches to try and find smaller planets more the size of Earth.

“The search for planets is the search for life,” Fischer said. “And at least for life as we know it, that means finding a planet similar to Earth.” Scientists believe Earth-like planets are the best place to look for life because they are the right size and orbit their host stars at the right distance to support liquid water, an essential ingredient for every form of life found on Earth.

The point of citizen science is to actively involve people in real research,” Schawinski said. “When you join Planet Hunters, you’re contributing to actual science — and you might just make a real discovery.”