Contact With 36-Year Old Spacecraft Results in Dancing, Hugs. Now Comes Even Bigger Challenge

What is it like to make contact with a 36-year old dormant spacecraft?

“The intellectual side of you systematically goes through all the procedures but you really end up doing a happy dance when it actually works,” Keith Cowing told Universe Today. Cowing, most notably from NASA Watch.com, and businessman Dennis Wingo are leading a group of volunteer engineers that are attempting to reboot the International Sun-Earth Explorer (ISEE-3) spacecraft after it has traveled 25 billion kilometers around the Solar System the past 30 years.

Its initial mission launched in 1978 to study Earth’s magnetosphere, and the spacecraft was later repurposed to study two comets. Now, on its final leg of a 30-plus year journey and heading back to the vicinity of Earth, the crowdfunding effort ISEE-3 Reboot has been working to reactivate the hibernating spacecraft since NASA wasn’t able to provide any funds to do so.

More Details: No turning back, NASA ISEE-3 Spacecraft Returning to Earth after a 36 Year Journey

The team awakened the spacecraft by communicating from the Arecibo radio telescope in Puerto Rico, using a donated transmitter. While most of the team has been in Puerto Rico, Cowing is back at home in the US manning the surge of media attention this unusual mission has brought.

Those at Arecibo are now methodically going through all the systems, figuring out what the spacecraft can and can’t do.

“We did determine the spin rate of spacecraft is slightly below what it should be,” Cowing said, “but the point there is that we’re now understanding the telemetry that we’re getting and its coming back crystal clear.”

For you tech-minded folks, the team determined the spacecraft is spinning at 19.16 rpm. “The mission specification is 19.75 +/- 0.2 rpm. We have also learned that the spacecraft’s attitude relative to the ecliptic is 90.71 degrees – the specification is 90 +/- 1.5 degrees. In addition, we are now receiving information from the spacecraft’s magnetometer,” Cowing wrote in an update on the website.

The next task will be looking at the propulsion system and making sure they can actually fire the engines for a trajectory correction maneuver (TCM), currently targeted for June 17.

One thing this TCM will do is to make sure the spacecraft doesn’t hit the Moon. Initial interactions with the ISEE-3 from Arecibo showed the spacecraft was not where the JPL ephemeris predicted it was going to be.

“That’s a bit troublesome because if you look at the error bars, it could hit Moon, or even the Earth, which is not good,” Cowing said, adding that they’ve since been able to refine the trajectory and found the ephemeris was not off as much as initially thought, and so such an impact is quite unlikely.

“However, it’s not been totally ruled out, — as NASA would say it’s a not a non-zero chance,” Cowing said. “The fact that it was not where it was supposed to be shows there were changes in its position. But assuming we can fire the engines when we want to, it shouldn’t be a problem. As it stands now, if we didn’t do anything, the chance of it hitting the Moon is not zero. But it’s not that likely.”

But the fact that the predicted location of the spacecraft is only off by less than 30,000 km is actually pretty amazing.

Dennis Wingo wrote this on the team’s website:

Consider this, the spacecraft has completed almost 27 orbits of the sun since the last trajectory maneuver. That is 24.87 billion kilometers. They are off course by less than 30,000 km. I can’t even come up with an analogy to how darn good that is!! That is almost 1 part in ten million accuracy! We need to confirm this with a DSN ranging, but if this holds, the fuel needed to accomplish the trajectory change is only about 5.8 meters/sec, or less than 10% of what we thought last week!

We truly stand on the shoulders of steely eyed missile men giants..

Dennis Wingo and ISEE-3 Reboot engineers at Arecibo. Image courtesy ISEE-3 Reboot.
Dennis Wingo and ISEE-3 Reboot engineers at Arecibo. Image courtesy ISEE-3 Reboot.

In 1982, NASA engineers at Goddard Space Flight Center, led by Robert Farquhar devised the maneuvers needed to send the spacecraft ISEE-3 out of the Earth-Moon system. It was renamed the International Cometary Explorer (ICE) to rendezvous with two comets – Giacobini-Zinner in 1985 and Comet Halley in 1986.

“Bob Farquhar and his team initially did it with pencils on the back of envelopes,” Cowing said, “so it is pretty amazing. And we’re really happy with the trajectory because we’ll need less fuel – we have 150 meters per second of fuel available, and we’ll only need about 6 meters per second of maneuvering, so that will give us a lot of margin to do the other things in terms of the final orbit, so we’re happy with that. But we have to fire the engines first before we pat ourselves on the back.”

And that’s where the biggest challenge of this amateur endeavor lies.

ISEE-3 Reboot Project mission patch. Image courtesy ISEE-3 Reboot.
ISEE-3 Reboot Project mission patch. Image courtesy ISEE-3 Reboot.

“The biggest challenge will be getting the engines to fire,” Cowing said. “The party’s over if we can’t get it to do that. The rest will be gravy. So that’s what we’re focusing on now.”

After the June 17 TCM, the next big date is August 10, when the team will attempt to put the spacecraft in Earth orbit and then resume its original mission that began back in 1978 – all made possible by volunteers and crowdfunding.

We’ll keep you posted on this effort, but follow the ISEE-3 Reboot Twitter feed, which is updated frequently and immediately after anything happens with the spacecraft. Also, for more detailed updates, check out the SpaceCollege website.

Want to Measure the Distance to the Moon Yourself? Now You Can!

Astronomy is a discipline pursued at a distance. And yet, actually measuring that last word — distance — can be incredibly tricky, even if we set our sights as nearby as the Moon.

But now astronomers from the University of Antioquia, Colombia, have devised a clever method that allows citizen scientists to measure the Moon’s distance with only their digital camera and smartphone.

“Today a plethora of advanced and accessible technological devices such as smartphones, tablets, digital cameras and precise clocks, is opening a new door to the realm of ‘do-it-yourself-science’ and from there to the possibility of measuring the local Universe by oneself,” writes lead author Jorge Zuluaga in his recently submitted paper.

While ancient astronomers devised clever methods to measure the local Universe, it took nearly two millennia before we finally perfected the distance to the Moon. Now, we can bounce powerful lasers off the mirrors placed on the Lunar surface by the Apollo Astronauts. The amount of time it takes for the laser beam to return to Earth gives an incredibly precise measurement of the Moon’s distance, within a few centimeters.

But this modern technique is “far from the realm and technological capacities of amateur astronomers and nonscientist citizens,” writes Zuluaga. In order to bring the local Universe into the hands of citizen scientists, Zuluaga and colleagues have devised an easy method to measure the distance to the Moon.

The trick is in observing how the apparent size of the Moon changes with time.

As the moon rises its distance to an observer on the surface of the Earth is slightly reduced.  Image Credit: Zuluaga et al.
As the moon rises its distance to an observer on the surface of the Earth is slightly reduced.
Image Credit: Zuluaga et al.

While the Moon might seem larger, and therefore closer, when it’s on the horizon than when it’s in the sky — it’s actually the opposite. The distance from the Moon to any observer on Earth decreases as the Moon rises in the sky. It’s more distant when it’s on the horizon than when it’s at the Zenith. Note: the Moon’s distance to the center of the Earth remains approximately constant throughout the night.

The direct consequence of this is that the angular size of the moon is larger — by as much as 1.7 percent — when it’s at the Zenith than when it’s on the horizon. While this change is far too small for our eyes to detect, most modern personal cameras have now reached the resolution capable of capturing the difference.

So with a good camera, a smart phone and a little trig you can measure the distance to the Moon yourself. Here’s how:

1.) Step outside on a clear night when there’s a full Moon. Set your camera up on a tripod, pointing at the Moon.

2.) With every image of the Moon you’ll need to know the Moon’s approximate elevation. Most smartphones have various apps that allow you to measure the camera’s angle based on the tilt of the phone. By aligning the phone with the camera you can measure the elevation of the Moon accurately.

3.) For every image you’ll need to measure the apparent diameter of the Moon in pixels, seeing an increase as the Moon rises higher in the sky.

4.) Lastly, the Moon’s distance can be measured from only two images (of course the more images the better you beat down any error) using this relatively simple equation:

Screen Shot 2014-05-27 at 11.47.25 AM

where d(t) is the distance from the Moon to your location on Earth, RE is the radius of the Earth, ht(t) is the elevation of the Moon for your second image, α(t)
is the relative apparent size of the Moon, or the apparent size of the Moon in your second image divided by the initial apparent size of the Moon in your first image and ht,0 is the initial elevation of the Moon for your first image.

So with a few pictures and a little math, you can measure the distance to the Moon.

“Our aim here is not to provide an improved measurement of a well-known astronomical quantity, but rather to demonstrate how the public could be engaged in scientific endeavors and how using simple instrumentation and readily available technological devices such as smartphones and digital cameras, any person can measure the local Universe as ancient astronomers did,” writes Zuluaga.

The paper has been submitted to the American Journal of Physics and is available for download here.

Guest Post: No turning back, NASA ISEE-3 Spacecraft Returning to Earth after a 36 Year Journey

Editor’s note: This guest post was written by Tim Reyes, a former NASA software engineer and analyst who has supported development of orbital and lander missions to the planet Mars since 1992.

The International Sun-Earth Explorer spacecraft (ISEE-3) is phoning home and will be returning whether we are ready or not. Launched in 1978 to study Earth’s magnetosphere, the spacecraft was later repurposed to study two comets. Now, on its final leg of a 30-plus year journey to return to Earth, there’s a crowdfunding effort called ISEE-3 Reboot aimed at reactivating the hibernating spacecraft since NASA is not offering any funding to do so.

Interestingly, on May 14th, the spacecraft will be in conjunction with the planet Jupiter, passing only 2 arc minutes from the giant gas planet. While the spacecraft is not visible to the human eye or optical telescopes, Jupiter on the 14th marks the spot where ISEE-3 resides in our night sky.

ISEE-3 Jupiter conjunction on May 14, 2014. Graphic courtesy of Tim Reyes.
ISEE-3 Jupiter conjunction on May 14, 2014. Graphic courtesy of Tim Reyes.

Here’s a bit of history on the program and this spacecraft in particular: The International Sun-Earth Explorers 1, 2 and 3 were the vanguard of what became an ongoing NASA program to monitor and understand the Sun-Earth relationship. ISEE-3 was part of a 3 spacecraft international effort to study the interaction of the Solar Wind with the Earth’s magnetosphere.

In 1982, NASA engineers at Goddard Space Flight Center, led by Robert Farquhar devised an unprecedented sequence of propulsion maneuvers including Earth and Moon gravitational assists to send the spacecraft ISEE-3 out of the Earth-Moon system. It was rechristened as the International Cometary Explorer (ICE) to rendezvous with two comets – Giacobini-Zinner in 1985 and Comet Halley in 1986.

The trajectory given ISEE-3 to escape the Earth-Moon system and flyby comets included returning to Earth on August 10, 2014. Final tweaks to the trajectory were completed in 1987 to assure a flyby of the Moon which Farquhar knew could be used to return ISEE-3 to an Earth orbit.

ISEE-3 Reboot Project mission patch. Image courtesy ISEE-3 Reboot.
ISEE-3 Reboot Project mission patch. Image courtesy ISEE-3 Reboot.

Enter the 21st Century, 30 years later and documents and magnetic tapes have predictably disappeared. The software and hardware to program, command and transmit to ISEE-3 are long gone. An independent team of engineers, led by Dennis Wingo and Keith Cowing (the same leaders of the Lunar Orbiter Image Recovery Project (LOIRP) — recovering old imagery on magnetic tape reels from the first lunar orbiter missions), operating outside the ranks and hallways of NASA are now racing against the clock to accomplish a landmark achievement: to turn on, command and maneuver a NASA spacecraft long ago abandoned, its primary missions completed in the 1980s. There are no funds, no remaining hardware or mission software to execute but this is the 21st century.

As of this writing there are five days left to contribute to this project, which is at 92% of its goal.

“ISEE-3 Reboot” team leader Dennis Wingo, says that if the efforts to contact the spacecraft are successful, plans are to return the spacecraft to the Sun-Earth L1 Point. Wingo emphasizes that Farquhar remains as instrumental to the spacecraft’s recovery today as he was to its departure, providing critical insight into the spacecraft systems.

While ISEE-3 has been on its long journey to return to Earth, remarkable technological and social events have unfolded. The personal computer arrived and matured; visionaries such as Steve Jobs have come and gone. With the Internet — non-existent when ISEE-3 launched – now a RocketHub crowdfunding effort was started to raise funds. Teleconferencing, more limited to board rooms in the days ISEE-3’s launch-date have brought retired NASA engineers and Wingo’s band of engineers together.

Amateur radio operators now have technology sufficient to acquire the signal and through the internet are also a part of the recovery effort. These events have conspired to give the band of engineers a small window of opportunity to recover the spacecraft. Additionally, without the original hardware transmitter, today’s high-speed electronics are able to emulate in software the hardware from 36 years ago.

While budget woes and shortfalls have plagued NASA since the 1960s, the 1980s were especially difficult. Recall that it included a decade void of any missions to Mars. Additionally, Congress refused to fund a US led mission to flyby Comet Halley. NASA was left out in the comet’s return while European, the Soviets and Japanese all had spacecraft planned. Repurposing ISEE-3 filled this gap and it became the first spacecraft to ever fly through the tail of a comet.

Now 36 years after launch, a spacecraft that time forgot, ISEE-3 has become a time traveler. It is the twin astronaut returning home from his long journey to find his twin, now aged and the World transformed. Wingo and his engineers, by recovering ISEE-3 create a link from the past to the present new generations of engineers. Wingo’s Skycorp will make ISEE-3 scientific data open to the public and to researchers and present a system for training engineers in mission management and spacecraft systems.

Get Mom a Crater on Mars for Mother’s Day

There’s a great book (and a not as great movie) called “Mars Needs Moms” . It’s a heartwarming (dare I say tear-jerking) story that provides a Martian’s-eye view of how important Moms are, and that they’ll love us “to the ends of the universe.”

With Mother’s Day coming up — and if you’re looking for another great combination of Moms and Mars — Uwingu is celebrating with a campaign called Mothers on Mars (MoM), which provides the first-ever opportunity to honor Moms on Mother’s Day by naming a feature for her on Uwingu’s new Mars map.

mother's day

Until Mother’s Day, May 11, Uwingu is offering a gift pack which includes a special Mother’s Day certificate.

Although the crater names likely won’t officially be approved by the IAU, the names will be used on maps used by the Mars One team, the commercial company that is looking to create a human settlement on Mars by 2023.

Planetary scientist and Uwingu’s CEO Dr. Alan Stern said the named craters will be similar to the names given to features on Mars by the mission science teams (such as Mt. Sharp on Mars –the IAU-approved name is Aeolis Mons) or even like Pike’s Peak, a mountain in Colorado which was named by the public — in a way — as early settlers started calling it that, and it soon became the only name people recognized.

Uwingu’s Mars Map Crater Naming Project allows anyone to help name the approximately 590,000 unnamed, scientifically cataloged craters on Mars, starting at $5 each.

Uwingu is hoping to raise $10 million for The Uwingu Fund, which provides grants to further space exploration, research and education.

With almost 10,000 craters named so far, true to their promise, Uwingu has already funded grants to projects and organizations including the Astronomers Without Borders, Students for the Exploration and Development of Space, Mars One mission, the Galileo Teacher Training Program, Explore Mars and the Allen Telescope Array at SETI.

“Our mission is to raise funds for space research while growing a successful company that gets people excited about space exploration and education”, said Stern, the former director of planetary science at NASA.

How to Watch an Asteroid Occult a Bright Star on March 20th

 Live in the New York City tri-state area, or anywhere near the path above? One of the most unusual big ticket astronomical events of 2014 occurs on in the morning hours of Thursday March 20th, when the asteriod 163 Erigone “blocks” or occults the bright star Regulus.

This is brightest star to be occulted by an asteroid for 2014, and has a potential to be observed by millions.

Occultations of stars by asteroids are often elusive events, involving faint stars and often occurring over remote locales. Not so with this one. In fact, the occultation of Regulus on March 20th will result in an “asteroid shadow” passing over viewers across the populous areas of New York and adjoining states in the U.S. northeast before racing into Canada.

And unlike most asteroid occultations, you won’t need any special equipment to detect this event. Shining at magnitude +1.3, Regulus is an easy and familiar naked eye object and is the 22nd brightest star in the sky. And heck, it might be interesting just to catch a view of the constellation Leo minus its brightest star!

Credit: Stellarium
Finding Regulus: Looking westward from the New York tri-state region at the time of the occultation. Credit: Stellarium.

Asteroid 163 Erigone shines at magnitude+12.4 during the event. At 72 kilometres in diameter and 1.183 A.U.s distant during the occultation, 163 Erigone was discovered by French astronomer Henri Joseph Perrotin on April 26th, 1876.

There’s a great potential to learn more not only about 163 Erigone during the event, but Regulus itself. Amateur observations will play a key role in this effort. The International Occultation Timing Association (IOTA) seeks observations from this and hundreds of events that occur each year. Not only can such a precise measurement help to pin down an asteroid’s orbit, but precise timing of the occultation can also paint a “picture” of the profile of the asteroid itself.

Example credit:
An example of an asteroid shape profile created by observers during the occultation of a star by asteroid 55 Pandora in 2007. Each cord represents an observer. Credit- The IOTA.

Regulus also has a faint white dwarf companion, and it’s just possible that it may be spied a fraction of a second before or after the event.   Does 163 Erigone have a moon? Several asteroids are now known to possess moons of their own, and it’s just possible that 163 Erigone could have a tiny unseen companion, the presence of which would be revealed by a small secondary event. Observers along and outside the track from Nova Scotia down to Kentucky are urged to be vigilant for just such a surprise occurrence:

Wide map (credit)
A widened map of the March 20th event, noting the span over which an unseen “moon” of 163 Erigone could be potentially observed. Credit: IOTA/Ted Blank/Google Earth.

The maximum duration for the event along the centerline is 14.3 seconds, and the rank for the event stands at 99%, meaning the path is pretty certain.

The shadow touches down on Earth in the mid-Atlantic at 5:53 Universal Time (UT), and grazes the island of Bermuda before making landfall over Long Island New York, New Jersey, Connecticut and northeastern Pennsylvania just after 6:06 UT/2:06 AM EDT. From there, the shadow of the asteroid heads to the northwest and crosses Lake Ontario into Canada before passing between the cities of Ottawa and Toronto just before 6:08 UT. Finally, it crosses out over Hudson Bay and Nunavut before departing the surface of our fair planet at 6:22 UT.

The path is about 117 kilometres wide, and the “shadow” races across the surface of the Earth at about 2.8 kilometres per second from the southeast to the northwest.

Credit: IOTA
A technical map including the specifics for the March 20th occultation of Regulus. Click to enlarge. Credit: The IOTA.

Timing an occultation can be accomplished via audio or video recording, though accurate time is crucial for a meaningful scientific observation. The IOTA has a complete explanation of tried and true methods to use for capturing and reporting the event.

We had a chance to catch up with veteran asteroid occultation observer Ted Blank concerning the event and the large unprecedented effort underway to capture it.

He notes that Regulus stands as the brightest star that has been observed to have been occulted by an asteroid thus far when 166 Rhodope passed briefly in front of it on October 19th, 2005.

“This is the best and brightest occultation ever predicted to occur over a populated area, and that covers the entire 40 years of predictive efforts,” Mr. Blank told Universe Today concerning the upcoming March 20th event.

The general public can participate in the scientific effort for observations as well.

“We’re trying to make a “picket fence” of thousands of observers to catch this asteroid, so the best thing to do is to go out and observe. If they live anywhere near or in the path, just step outside (or watch from a warm house through a window). Make sure they are looking at the right star,” Mr. Blank told Universe Today.  “If they can travel an hour or so to be somewhere in the predicted path, by all means do so – they’ll be home and back in bed well before rush hour starts! Then report what they saw at the public reporting page. If no occultation was seen, report a miss. This is more important that people think, since “miss” observations define the edges of the asteroid.”

There is also a handy “Occultation 1.0” timing app now available for IPhone users for use during the event.

Mr. Blank also plans to webcast the occultation live via UStream, and urges people to check the Regulus2014 Facebook page for updates on the broadcast status, as well as the final regional weather prospects leading up event next week. For dedicated occultation chasers, mobility and the ability to change observing locale at the last moment if necessary may prove key to nabbing this one. One of our preferred sites to check the cloud cover forecast prior to observing any event is the Clear Sky Chart.

This promises to be a historic astronomical event. Thanks to Ted Blank and Brad Timerson at the IOTA for putting the public outreach project together for this one, and be sure not to miss the occultation of Regulus on March 20th!

‘Moby Dick’ Asteroid 2000 EM26 is Missing – Help Astronomers Find It

Yesterday evening you may have dropped by to watch Slooh’s live coverage of asteroid 2000 EM26 as it passed just 8.8 lunar distances of Earth. Surprise – the space rock never showed up!  Slooh’s robotic telescope attempted to recover the asteroid and share its speedy travels with the world but failed to capture an image at the predicted position.

Now nicknamed Moby Dick after the elusive whale in Herman Melville’s novel of the same name, the asteroid’s gone missing in the deep sea of space. Earthlings need fear no peril; it’s not headed in our direction anytime soon. Either the asteroid’s predicted path was in error or the object was much fainter than expected. More likely the former.


Last night’s coverage attempt of 2000 E26’s close flyby of Earth

2000 EM26’s predicted brightness at the time was around magnitude 15.4, not bright but well within range of the telescope. Rather than throwing their hands up in the air, the folks at Slooh are calling upon amateur astronomers make a photographic search for the errant space rock in the next few nights.

Since the asteroid was last observed 14 years ago for only 9 days, it isn’t too surprising that uncertainties in its position could add up over time, shifting the asteroid’s position and path to a different part of the sky by 2014.  According to Daniel Fischer, German amateur astronomer and astronomy writer, the positions were off by 100 degrees! As Paul Cox, Slooh’s Observatory Director, points out:

“Discovering these Near Earth Objects isn’t enough. As we’ve seen with 2000 EM26, all the effort that went into its discovery is worthless unless follow­up observations are made to accurately determine their orbits for the future.  And that’s exactly what Slooh members are doing, using the robotic telescopes at our world­-class observatory site to accurately measure the precise positions of these asteroids and comets.”

If a determined, modern-day Ahab doesn’t find this asteroidal Moby Dick, one of the large scale robotic telescope surveys probably will. Here’s a link to the NASA/JPL particulars including brightness, coordinates and distance for 2000 EM26.

Similar sized asteroids, including ones passing even closer to Earth, zip by every month. 2000 EM26 received a lot of coverage yesterday likely because it arrived near the time of the anniversary of the Chelyabinsk meteorite fall over Russia. Though it remains scarce for now, eyes are on the sky to find the asteroid again and refine its orbit. Hopefully the beast won’t get away next time.

Check out the lively discussion going on at Asteroid and Comet Researcher List. More information HERE.

Zooniverse Reaches One Million Volunteers

Zooniverse — the renowned home of citizen science projects — is now one million strong. That’s one million registered volunteers since the project began less than seven years ago.

It all began when Galaxy Zoo launched in July 2007. The initial response to this project was overwhelming. Since then the Zooniverse team has created almost 30 citizen science projects ranging from astronomy to zoology.

“We are constantly amazed by the effort that the community puts into our projects,” said the Zooniverse team in an email regarding the news late last week.

Many projects have produced unique scientific results, ranging from individual discoveries to classifications that rely on input from thousands of volunteers. As of today there are 60+ papers listed on the websites publications page, many of which have made the news.

In the first two weeks after Galaxy Zoo’s launch, registered citizen scientists classified more than a million galaxies. Each volunteer was presented with an image from the Sloan Digital Sky Survey and asked to classifiy the galaxy as belonging to one of six categories: elliptical, clockwise spiral, anticlockwise spiral, edge-on, merger, or unsure.

An example of an unknown galaxy needing classification. Image credit: Galaxy Zoo
An example of an unknown galaxy needing classification. Image credit: Galaxy Zoo

But citizen scientists weren’t simply labeling galaxies, they were helping astronomers to answer crucial questions and raise new ones about our current understandings of galaxy evolution. One significant finding showed that bar-shaped features in spiral galaxies has doubled over the latter half of the history of the Universe. This confirms that bars signify maturity in spiral galaxies and play an important role in shutting down star formation.

Another finding downplayed the importance of collisions in forming supermassive black holes. Citizen scientists found 13 bulgeless galaxies — suggesting they had never experienced a major collision — with supermassive black holes, nonetheless. All healthy black holes, with masses at least millions of times that of the Sun, must have grown through less dramatic processes.

Planet Hunters — a citizen science project developed in 2010 — has also seen wide success. Ordinary citizens examine the Kepler Space Telescope’s light curves of stars and flag any slight dips in brightness that might indicate a planet crossing in front of the star. Many eyes examine each light curve, allowing some to cross check others.

An example light curve.
An example light curve asking for any obvious dips. Image Credit: Planet Hunters

In roughly three years, citizen scientists examined more than 19 million Kepler light curves. Contrary to what many astronomers expected, ordinary citizens were able to spot transiting objects that many computer algorithms missed.

In 2012, Planet Hunter volunteers, Kian Jek and Robert Gagliano discovered an exoplanet in a four-star system. The Neptune-size planet, labeled “Planet Hunters 1” (PH1), orbits its two parent stars every 138 days. A second pair of stars, approximately 90 billion miles away, are also gravitationally bound to the system. This wacky system was later confirmed by professional astronomers.

In 2013, Planet Hunter volunteers discovered yet another planet candidate, which, if confirmed, would make a known six-planet system really the first seven-planet system. The five innermost planets are smaller than Neptune, while the two outer planets are gas giants. All orbit within Earth’s orbit around the Sun.

These are only a few of Zooniverse’s citizen science projects. Others allow ordinary citizens to help analyze how whales communicate with one another, study the lives of the ancient Greeks, and even look at real life cancer data. So join today and become number one million and one.

Zooniverse is produced by the Citizen Science Alliance, which works with many academic and other partners worldwide.

Search for Planetary Nurseries in the Latest Citizen Science Project

Growing up, my sister played video games and I read books. Now that she has a one-year-old daughter we constantly argue over how her little girl should spend her time. Should she read books in order to increase her vocabulary and stretch her imagination? Or should she play video games in order to strengthen her hand-eye coordination and train her mind to find patterns?

I like to believe that I did so well in school because of my initial unadorned love for books. But I might be about to lose that argument as gamers prove their value in science and more specifically astronomy.

Take a quick look through Zooniverse and you’ll be amazed by the number of Citizen Science projects. You can explore the surface of the moon in Moon Zoo, determine how galaxies form in Galaxy Zoo and search for Earth-like planets in Planet Hunters.

In 2011 two citizen scientists made big news when they discovered two exoplanet candidates — demonstrating that human pattern recognition can easily compliment the powerful computer algorithms created by the Kepler team.

But now we’re introducing yet another Citizen Science project: Disk Detective.

Planets form and grow within dusty circling planes of gas that surround young stars. However, there are many outstanding questions and details within this process that still elude us. The best way to better understand how planets form is to directly image nearby planetary nurseries. But first we have to find them.

zooniverse

“Through Disk Detective, volunteers will help the astronomical community discover new planetary nurseries that will become future targets for NASA’s Hubble Space Telescope and its successor, the James Webb Space Telescope,” said the chief scientist for NASA Goddard’s Sciences and Exploration Directorate, James Garvin, in a press release.

NASA’s Wide-field Infrared Survey Explorer (WISE) scanned the entire sky at infrared wavelengths for a year. It took detailed measurements of more than 745 million objects.

Astronomers have used complex computer algorithms to search this vast amount of data for objects that glow bright in the infrared. But now they’re calling on your help. Not only do planetary nurseries glow in the infrared but so do galaxies, interstellar dust clouds and asteroids.

While there’s likely to be thousands of planetary nurseries glowing bright in the data, we have to separate them from everything else. And the only way to do this is to inspect every single image by eye — a monumental challenge for any astronomer — hence the invention of Disk Detective.

Brief animations allow the user to help classify the object based on relatively simple criteria, such as whether or not the object is round or if there are multiple objects.

“Disk Detective’s simple and engaging interface allows volunteers from all over the world to participate in cutting-edge astronomy research that wouldn’t even be possible without their efforts,” said Laura Whyte, director of Citizen Science at the Adler Planetarium in Chicago, Ill.

The project is hoping to find two types of developing planetary environments, distinguished by their age. The first, known as a young stellar object disk is, well, young. It’s less than 5 million years old and contains large quantities of gas. The second, known as a debris disk, is older than 5 million years. It contains no gas but instead belts of rocky or icy debris similar to our very own asteroid and Kupier belts.

So what are you waiting for? Head to Disk Detective and help astronomers understand how complex worlds form in dusty disks of gas. The book will be there when you get back.

The original press release may be found here.

App Review: Earth or Not Earth

The folks at Cosmoquest have released a cool new citizen science app for Android! “Earth or Not Earth” allows players to test their knowledge of Earth, as well as learn more about the fascinating geology of the rocky worlds in our solar system. You can also challenge your friends on Facebook to beat your scores, thanks to the Facebook integration feature.

“Earth or Not Earth” was developed by Southern Illinois University graduate student and Cosmoquest developer Joseph Moore. Moore designed “Earth or Not Earth,” and included two additional game features: “Matching” and “Pick 2.” The images used in “Earth or Not Earth” are public domain, and are sourced primarily from NASA planetary science missions, with more images to be added to the app in the future.

The app does cost $1.99 USD, and the Proceeds from “Earth or Not Earth” help fund the programmers at Cosmoquest, as well as citizen science programs, educational programs, and future mobile apps.

"Earth or Not Earth" Main Menu - Click to embiggen
“Earth or Not Earth” main menu – Click to embiggen.
Image Credit: Cosmoquest
The user interface for “Earth or Not Earth” is pretty straightforward. After installing the app, the initial screen will prompt users to login with their Cosmoquest credentials (or create a new account). While some may see this as an annoyance, a Cosmoquest account allows access to many of the other citizen science projects Cosmoquest offers, such as Moon Mappers, Asteroid Mappers, and others.

After logging in, users are able to select one of several game-play options.

Players can start with the “Learn” section, which allows users to learn more about the rocky worlds in our solar system. Additionally, users can learn about geologic features such as craters, volcanism, fault lines, and even man-made surface alterations.

After learning about the processes that shape and alter rocky worlds in our solar system, users can test their knowledge with the “Earth or Not Earth”, “Matching”, or “Pick Two” mini-games.

Earth or Not Earth? Click to embiggen. Image Credit: Cosmoquest
Earth or Not Earth?
Click to embiggen.
Image Credit: Cosmoquest
“Earth or Not Earth” Displays images from various NASA planetary missions. The goal for the player is to determine if the image is of Earth, or Not. For those looking for a greater challenge, the “Matching” minigame provides an image that players must try to match to a rocky world, or a planetary geology process.

The most challenging mini-game in “Earth or Not Earth” is “Pick Two”, where players select two images that belong to the same world out of several shown on screen. With some images being in color, and others in black and white, players must rely on the knowledge gained from the “Learn” feature to make educated deductions about which images belong to which world.

Fans of planetary science will find “Earth or Not Earth” a challenging, yet entertaining and educational gaming experience. Gameplay is quick, and makes for a nice break between meetings, or something to pass the time while waiting to catch the bus.

“Earth or Not Earth” is available from the Google Play store at: https://play.google.com/store/apps/details?id=org.cosmoquest.earthnotearth If you’d like to learn more about how the app was developed, Cosmoquest has a blog post available at: http://cosmoquest.org/blog/2013/12/got-earth/

Earthlings Wave at Saturn as Cassini Images Us

Earth Waves at Saturn and Cassini on July 19, 2013
From more than 40 countries and 30 U.S. states, people around the world shared more than 1,400 images of themselves as part of the Wave at Saturn event organized by NASA’s Cassini mission on July 19, 2013. The Cassini team created this image collage as a tribute to the people of Earth
Credit: NASA/JPL-Caltech/People of Earth
See link below to the absolutely gigantic full resolution version [/caption]

On July 19, millions of Earthlings worldwide participated in NASA’s ‘Wave at Saturn’ campaign as the NASA Cassini Saturn orbiter turned about and imaged all of us.

Earthlings from 40 countries and 30 U.S. states heeded NASA’s call to photograph themselves while smiling and waving at Saturn and Cassini across 1 billion miles of interplanetary space and shared over 1400 images.

The results of all those images has now been assembled into a fabulous collage in the shape of our planet and released today (Aug. 21) by NASA and the Cassini team as a tribute to the People of Earth.

“Did you wave at Saturn and send us your photo? Then here’s looking at you!” NASA announced on the Cassini Facebook page.

This event was the first time that the citizens of Earth knew in advance that a distant interplanetary spacecraft was photographing portraits of our home planet and our Moon. NASA invited everyone to participate.

Photos flooded into NASA via Twitter, Facebook, Flickr, Instagram, Google+ and email.

Click here for the full resolution version. But be forewarned – it weighs in at over 26 MB and it’s far too big to post here.

The Day the Earth Smiled: Sneak Preview In this rare image taken on July 19, 2013, the wide-angle camera on NASA's Cassini spacecraft has captured Saturn's rings and our planet Earth and its moon in the same frame. Image Credit: NASA/JPL-Caltech/Space Science Institute
The Day the Earth Smiled: Sneak Preview
In this rare image taken on July 19, 2013, the wide-angle camera on NASA’s Cassini spacecraft has captured Saturn’s rings and our planet Earth and its moon in the same frame. Image Credit: NASA/JPL-Caltech/Space Science Institute

“Thanks to all of you, near and far, old and young, who joined the Cassini mission in marking the first time inhabitants of Earth had advance notice that our picture was being taken from interplanetary distances,” said Linda Spilker, Cassini project scientist at NASA’s Jet Propulsion Laboratory, Pasadena, Calif, in a statement.

“While Earth is too small in the images Cassini obtained to distinguish any individual human beings, the mission has put together this collage so that we can celebrate all your waving hands, uplifted paws, smiling faces and artwork.”

The Cassini imaging science team is still assembling the hundreds of images of Saturn and Earth snapped by the spacecraft as we were waving, to create individual color composites and a panoramic view of the ‘pale blue dot’ and the entire Saturnian system.

To capture all of Saturn and its wide swath of rings, Cassini’s wide angle camera snapped a mosaic of 33 footprints on July 19, 2013.

“At each footprint, images were taken in different spectral filters for a total of 323 images,” says Carolyn Porco, Cassini Imaging Team leader, Space Science Institute in Boulder, Colo.

Cassini took the pictures of Earth from a distance of about 898 million miles (1.44 billion kilometers) away from the home to every human being that has ever lived.

Here is our partial version of Cassini’s mosaic.

Partial context mosaic of the Earth and Saturn taken by NASA’s Cassini orbiter on July 19, 2013.   This mosaic was assembled from five wide angle camera raw images.  Credit: NASA/JPL-Caltech/Ken Kremer/Marco Di Lorenzo
Partial context mosaic of the Earth and Saturn taken by NASA’s Cassini orbiter on July 19, 2013. This mosaic was assembled from five Cassini wide angle camera raw images and offers a sneak peek of the complete panorama. Earth at lower right. Credit: NASA/JPL-Caltech/Ken Kremer/Marco Di Lorenzo

Cassini was launched from Florida in 1997.

It achieved orbit at Saturn in 2004 and has transmitted breathtaking images and science that revolutionized our understanding of the Saturnian system.

The mission is scheduled to continue until 2017 when it will commit a suicide death dive into the humongous gas giant.

Coincidentally, the first humans (Neil Armstrong and Buzz Aldrin) set foot on the Moon 44 years ago nearly to the day of Cassini’s Earth-Moon portrait on July 20, 1969 aboard Apollo 11.

And likewise on July 19, 2013, billionaire space enthusiast Jeff Bezos announced that his dive teams had recovered components of an Apollo 11 first stage F-1 rocket engine from the Saturn V moon rocket that propelled the first humans to the Moon.

Ken Kremer

JPL Waves at Saturn As NASA's Cassini spacecraft turned its imaging cameras to Earth, scientists, engineers and visitors at NASA's Jet Propulsion Laboratory, Pasadena, Calif., gathered to wave at our robotic photographer in the Saturn system on July 19, 2013. Credit: NASA/JPL-Caltech
JPL Waves at Saturn As NASA’s Cassini spacecraft turned its imaging cameras to Earth, scientists, engineers and visitors at NASA’s Jet Propulsion Laboratory, Pasadena, Calif., gathered to wave at our robotic photographer in the Saturn system on July 19, 2013. Credit: NASA/JPL-Caltech