Universe Today Exclusive – Cygnus Nova V2491 Revealed for Readers

Clouds got you down? No chance of seeing V2491 Cyg because of the weather? Are you sleeping when Cygnus is up? One of the most beautiful facets of having an astronomer around is being able to share information with other observatories around the world and put them to work. This time the job was handed to our friends in Australia who were able to produce for us an exclusive look at an elusive nova.

In trial test on image acquisition utilizing the combined resources of Macedon Ranges Observatory and its resident astronomers, they were able to nab the nova in less than 30 minutes from notice being given. The image was then processed, labeled and returned again halfway around the world within hours for UT readers to enjoy.

On 15 April 2008 from 10.50 to 11.40 UT, Joseph Brimacombe from Cairns, Queensland, Australia was busy employing remote technology located at 32 degrees 54 minutes North; 15 degrees 32 min West and recording the nova with an SBIG ST-L-1001 CCD camera. Coupled with a 20″ Ritchey-Chretien Optical System, 8 separate exposures of 5 minutes duration were taken in white light, and the results speak for themselves.

By comparing the zoom map of the area presented in the original Cygnus Nova Alert it’s easy to see the identifying line of three stars which helps orient the viewer to the general area. As predicted, Cygnus Nova V2491 easily stands out amongst the background stars.

Says Observatory Director, Burt Candusio: “The exercise was primarily designed to test the imaging and response capabilities of M.R.O resident astronomers. If another similar event presents itself, we would now be confident in our capabilities of imaging a target effectively and quickly from any part of the globe. A most pleasing outcome for all concerned and especially for Joseph Brimacombe.”

But the thrill was nothing compared to Joe’s own success: “Trapped under the mostly cloudy Cairns skies, I was remotely imaging the running chicken nebula (NGC 2944) at the Macedon Range Observatory and the Pinwheel galaxy (M101) at New Mexico Skies, when my good mate Bert Candusio notified me of a new nova (V2491) in Cygnus. At the time, it was 60 degrees below the horizon at the MRO, but 50 degrees above the horizon at NMS, so I slewed my 20 inch RCOS at NMS to the co-ordinates Bert had provided. There was just sufficient time before dawn to snap 8 x 5 min luminance frames of a dense star field. Both Bert and I were delighted to find the nova near the middle of the frame. We estimate the magnitude at around 10. The beauty of NGC 2944 and M101 was not a match for the excitement of imaging an acute stellar explosion for the first time!”

In the case of V2491 Cyg, the only thing better than having the stars up above is having friends down under. Our thanks go to our friends at Macedon Ranges Observatory!

New Technique Can Estimate Size and Frequency of Meteorite Impacts

News today from the National Science Foundation will have an impact on how scientists are able to study…. well, impacts. A team of geologists has developed a new way of determining the size and frequency of meteorites that have collided with Earth in the past. By studying sediments found on the ocean floor and looking for isotopes of the rare element osmium, scientists can now figure out not only when a meteorite impact occurred in Earth’s history, but also the size of the meteorite. One of the most exciting benefits of this new technique is the potential for identifying previously unknown impacts.

When meteorites collide with Earth, they carry a different osmium isotope ratio than the levels normally seen throughout the oceans.

“The vaporization of meteorites carries a pulse of this rare element into the area where they landed,” says Rodey Batiza of the National Science Foundation, which funded the research. “The osmium mixes throughout the ocean quickly. Records of these impact-induced changes in ocean chemistry are then preserved in deep-sea sediments.”

François Paquay, a geologist at the University of Hawaii at Manoa analyzed samples from two sites where core samples of the ocean floor were taken, one near the equatorial Pacific and another located off of the tip of South Africa. He measured osmium isotope levels during the late Eocene period, a time during which large meteorite impacts are known to have occurred.

“The record in marine sediments allowed us to discover how osmium changes in the ocean during and after an impact,” says Paquay.

The scientists believe this new approach to estimating impact size will become an important complement to a more well-known method based on iridium.

Paquay’s team also used this method to make estimates of impact size at the Cretaceous-Tertiary (K-T) boundary 65 million years ago. Since the osmium carried by meteorites is dissolved in seawater, the geologists were able to use their method to estimate the size of the K-T meteorite as four to six kilometers in diameter. The meteorite was the trigger, scientists believe, for the mass extinction of dinosaurs and other life forms.

But Paquay doesn’t believe this method will work for events larger than the K-T impact. With such a large meteorite impact, the meteorite contribution of osmium to the oceans would overwhelm existing levels of the element, making it impossible to sort out the osmium’s origin.
But it will be interesting to follow this to see if new, unknown impacts in Earth’s history can be discovered.

Original News Source: Eureka Alert

More Space News From Russia

When it rains space news from Russia, it pours. Not only did the news break today about the Russian Space Agency’s plans to send monkeys to Mars, but also, Russia wants to build an Earth-orbiting factory to build large, interplanetary ships that might be too large to launch from Earth. Additionally, Roscosmos, the Russian space agency said that beginning in 2010, they will likely terminate ferrying space tourists to the International Space Station.

According to the head of Roscosmos Anatoly Perminov, the space agency proposed building a manned assembly complex in Earth orbit and the Russian Security Council supported the idea in an April 11, 2008 meeting. No word on exactly when an orbiting spaceship assembly line would be constructed, but Perminov said it likely wouldn’t be built until after the ISS is completed, which they said would be about 2020. Also, no word if the interplanetary ships will be built for humans or monkeys.

As far as curtailing the program that brings space tourists to the ISS, the Perminov said the increase in crew size on the ISS from the current three members to six in 2009, and then the proposed retirement of the space shuttle in 2010, will put “growing pressure” on the Russian Soyuz spacecraft that carries crews and supplies to the space station. Perminov said they will no longer accept proposals from space tourists, adding that space tourism shouldn’t interfere with scientific research. Roscosmos teamed up with the company Space Adventures beginning in 2001 to bring tourists to the ISS, which seemed to be a fairly lucrative program for the cash-strapped Russian space agency. Existing contracts to bring tourists to the station will be fulfilled, Perminov said.

Dennis Tito became the first space tourist in 2001 when he paid $20 million to ride the Soyuz for a week-long stay on the ISS. The next (and sixth) tourist will be game developer Richard Garriott, scheduled for a Soyuz flight in October 2008.

Original News Source: Lenta Ru (translated)

Universe Today Astronomy Picture of the Week: NGC 3199 – The Interstellar Snow Plough

NGC 3199 - Credit: Ken Crawford

One thing is certain, Wolf-Rayet stars produce some interesting
science. In this week’s portrait we see a distorted bubble produced
by a moving star blowing a strong stellar wind into a surrounding
uniform interstellar medium – yet is isn’t uniform. What exactly is
going on here?

Hanging out some 11,736 light years away in the southern constellation
of Carina (RA 10:17:24.0 Dec -57:55:18), NGC 3199 is classed as a
diffuse nebula or supernova remnant. Discovered by John Herschel in
1834, it has been known throughout historic astronomy observations as
bright, large, crescent-shaped nebula with embedded stars, but modern
astronomy shows it as much more. It’s being pushed along by
Wolf-Rayet star 18.

Says Dr. Michael Corcoran: “Wolf-Rayet stars (named for their
discoverers) are very large, massive stars (stars which are about 20
times bigger than the sun) nearly at the end of their stellar lives.
As these stars age, material which the stars have cooked up in their
central nuclear furnaces (like carbon and oxygen) gradually reach the
surface of the star. When enough material reaches the surface, it
absorbs so much of the intense light from the star that an enormously
strong wind starts to blow from the star’s surface. This wind becomes
so thick that it totally obscures the star – so when we look at a
Wolf-Rayet star, we’re really just seeing this thick wind. The amount
of material which the wind carries away is very large – typically, a
mass equivalent to that of the entire earth is lost from the star each
year. The mass loss is so large that it significantly shortens the
star’s life, and as you can imagine has important effects on the space
surrounding the star too. We think that very massive stars become
Wolf-Rayet stars just before they explode as supernova (though no one
has yet seen such a star explode).

At magnitude 11, NGC 3199 is observable with larger amateur
telescopes, but the crescent shape is cause for study by some of the
finest research telescopes and astronomers in the world. Through
optical observations, the ring nebula and cavities around WF stars have
painted a history of mass loss in these highly evolved stellar
curiosities. By studying molecular gases associated with Wolf-Rayet
stars
, it appears that some materials seem to be avoiding optical
emission.

In reading scientific reports submitted by A. P. Marston, molecular
gas has already been observed around Wolf-Rayet Star 18 – the first to
confirm the presence of HCN, HCO+, CN, and HNC and molecules. This
makes the Wolf-Rayet ring nebula NGC 3199 very unique and filled
associated molecular gas that took the form clumpy ejecta and
interstellar material. At one time, NGC 3199’s formation was believed
to be caused by bow shock, but current data now shows the associated
Wolf Rayet star is moving at a right angle to its enveloping
environment. Could this be an indication that something else is at
work here? Astronomers seem to think so.

According to their information, it is possible the northern area of
the optically bright nebula is being torn apart by a possible blowout
of Wolf Rayet wind. This, in turn, affects the surrounding ejecta and
could very well account for the observed velocity. By modeling
molecular abundances, the central Wolf Rayet star could be contributing a
portion of its material to this nebula as ejecta. Despite its still
unsolved mysteries, NGC 3199 is a stunning portrait. J.E. Dyson and
Ghanbari summed it up best when they described it as an “interstellar
snow plough”.

This week’s awesome astronomy picture is the work of Ken Crawford, taken at Macedon Ranges Observatory.

Says Ken: “This image was taken using an Apogee CCD Camera that uses primarily Narrow Band data which is color mapped mixed with RGB for natural star colors and back ground balancing. The bright blue area shows lots of OIII (ionized oxygen) signal which really shows the direction of the star movement well. The star is said to be moving at about 60 km/s through the interstellar gas.”

Cygnus Nova Alert!!

Supernova (Artist Rendering: Courtesy of NASA)

According to today’s April 11 IAU Circular 8934, issued by the Central Bureau for Astronomical Telegrams at the Smithsonian Astrophysical Observatory in Cambridge, Massachusetts a 7th-magnitude nova was discovered on April 10, 2008, by Koichi Nishiyama and Fujio Kabashima in Japan. It’s time to observe!

NASA

The event is located in Cygnus, about one-third of the way from Albireo (β Cygni) to Sadr (γ Cygni) – RA 19 43 0 Dec +32 19. From early reports, it may still be continuing to brighten. Ernesto Guido and Giovanni Sostero of Remanzacco, Italy confirmed the discovery before the IAU announcement was made and estimated the nova’s magnitude at 7.5 at approximate 09:00:00 UT, 11 April 2008.

This image above is a map of Cygnus where the dimmest star shown is magnitude 7.5. The target area is circled. Binoculars and small telescopes are very capable of seeing this event! The zoomed map you see here is slightly larger than a binocular field of view and features the target area. The magnitudes are also set to 7.5. Should the event brighten, any stars you see that are in the target area brighter than what is shown will be the nova event.

If any updates or corrections occur, I will post them immediately. Clear skies and good luck!

Phoenix Spacecraft Maneuvers for Mars Landing

Looking towards a May 25 landing for the Phoenix Mars Lander, the navigation team for mission adjusted the flight path for the spacecraft on April 10. “This is our first trajectory maneuver targeting a specific location in the northern polar region of Mars,” said Brian Portock, chief of the Phoenix navigation team at the Jet Propulsion Laboratory. The mission’s two prior trajectory maneuvers, made last August and October, put the spacecraft on target to just intersect with Mars. But this recent maneuver put it on course to land at a site called “Green Valley,” a broad, flat valley in Mars north polar region. NASA announced they have “conditionally” approved this site, but a final decision has yet to be made. And why, you ask, hasn’t a final decision been made on a landing site at this late date?

Phoenix mission managers are still looking for a safe, yet exciting place to land. The proposed landing area is an ellipse about 62 miles by about 12 miles (100 kilometers by 20 kilometers). In looking at high resolution images of this area, researchers have mapped more than five million rocks in and around that ellipse, each big enough to end the mission if hit by the spacecraft during landing. “The environmental risks at landing — rocks and slopes — represent the most significant threat to a successful mission. There’s always a chance that we’ll roll snake eyes, but we have identified an area that is very flat and relatively free of large boulders,” said JPL’s David Spencer, Phoenix deputy project manager and co-chair of the landing site working group.

MRO’s High Resolution Imaging Science Experiment (HiRISE) camera has taken more than three dozen images of the area. Analysis of those images prompted the Phoenix team to shift the center of the landing target 13 kilometers (8 miles) southeastward, away from slightly rockier patches to the northwest. Navigators used that new center for planning the recent trajectory correction maneuver.

“Our landing area has the largest concentration of ice on Mars outside of the polar caps. If you want to search for a habitable zone in the arctic permafrost, then this is the place to go,” said Peter Smith, principal investigator for the mission, at the University of Arizona , Tucson .

When Phoenix lands, it will dig to an ice-rich layer expected to lie within arm’s reach of the surface. It will analyze the water and soil for evidence about climate cycles and investigate whether the environment there has been favorable for microbial life.

The April 10 trajectory adjustment began by pivoting Phoenix 145 degrees to orient and then fire spacecraft thrusters for about 35 seconds, then pivoting Phoenix back to point its main antenna toward Earth. The mission has three more planned opportunities for maneuvers before May 25 to further refine the trajectory for a safe landing at the desired location.

In the final seven minutes of its flight on May 25, Phoenix must perform a challenging series of actions to safely decelerate from nearly 21,000 kilometers per hour (13,000 mph). The spacecraft will release a parachute and then use pulse thrusters at approximately 914 meters (3,000 feet) from the surface to slow to about 8 kilometers per hour (5 mph) and land on three legs.

For more information about Phoenix , visit NASA’s site, and ASU’s site

Evidence of Asteroid Impact For Sodom and Gomorrah?

Cuneiform clay tablet. Image Credit: Bristol University

A Cuneiform clay tablet that has puzzled researchers for over 150 years is now believed to describe an asteroid impact in 3123 BC in Austria. Researchers believe the tablet, which seemingly describes a cataclysmic event, may account for the biblical tale of Sodom and Gomorrah. No mention of pillars of salt however, on the clay tablet.

Geologists discovered evidence of a giant landslide centered at Köfels, Austria back in the 19th century. At 500 meters thick and five kilometers in diameter, this landslide mystified researchers trying to figure out why such an event occurred. Some researchers thought the landslide may have been caused by a meteorite impact, because of the evidence of crushing pressures and explosions. But there was no crater, so it didn’t look as an impact site should, and the impact theory fell out of favor. But researchers knew this wasn’t just an ordinary landslide.

But new research brings the impact theory back into play. It centers on another 19th century mystery, a Cuneiform tablet in the British Museum, known as “the Planisphere”. It was found in the remains of the library in the Royal Place at Nineveh, and was made by an Assyrian scribe around 700 BC. It is an astronomical work with drawings of constellations and the text has known constellation names. The clay tablet has attracted a lot of attention but until now no one has come up with a convincing explanation as to what it is.

Alan Bond and Mark Hempsell from Bristol University used computer programs to simulate trajectories and reconstruct the night sky thousands of years ago to establish what the Planisphere tablet refers to. It is a copy of the night notebook of a Sumerian astronomer as he records the events in the sky before dawn on the 29 June 3123 BC (Julian calendar). Half the tablet records planet positions and cloud cover, but the other half of the tablet records an object large enough for its shape to be noted even though it is still in space. The astronomer made an accurate note of its trajectory relative to the stars, which to an error better than one degree is consistent with an impact at Köfels.

The observation suggests the asteroid is over a kilometer in diameter and the original orbit about the Sun was an Aten type, a class of asteroid that orbits close to the earth, that is resonant with the Earth’s orbit. This trajectory explains why there is no crater at Köfels. The incoming angle was very low (six degrees) and means the asteroid clipped a mountain near the town of Längenfeld, 11 kilometers from Köfels, and this caused the asteroid to explode before it reached its final impact point. As it travelled down the valley it became a fireball, about five kilometers in diameter (the size of the landslide). When it hit Köfels it created enormous pressures that pulverized the rock and caused the landslide but because it was no longer a solid object it did not create a classic impact crater.

Mark Hempsell, hinting at the possible fate of Sodom and Gomorrah, added, “Another conclusion can be made from the trajectory. The back plume from the explosion (the mushroom cloud) would be bent over the Mediterranean Sea re-entering the atmosphere over the Levant, Sinai, and Northern Egypt. The ground heating though very short would be enough to ignite any flammable material – including human hair and clothes. It is probable more people died under the plume than in the Alps due to the impact blast.”

This evidence seems to coincide with the biblical story of the legendary dens of vice (“Then the Lord rained down burning sulfur on Sodom and Gomorrah – from the Lord out of the heavens” – Genesis 19:24) but it’s never been categorically proven that the towns actually existed in their suspected location close to the Dead Sea. And the story of Lot’s wife turning into a pillar of salt for turning around to witness the mayhem is just biblical legend as well.

The full translation of the tablet together with the analysis supporting these conclusions can be found in the book, “A Sumerian Observation of the Kofels’ Impact Event” by Bond and Hempsell.

Original News Sources: Bristol University and The Register

Smallest Exo-planet Found

Ignasi Ribas with simulated picture of the new planet. Image Credit: REUTERS/Sergio Perez

We’re getting closer to finding an Earth-like planet out there in the universe. Spanish astronomers announced the discovery of the smallest exo-planet found to date, located 30 light years from earth. “I think we are very close, just a few years away, from detecting a planet like Earth,” team leader Ignasi Ribas said at a news conference on Wednesday April 9, 2008. The newest planet, “GJ 436T” was discovered by a team led by Ribas through its gravitational pull on other planets already discovered around the same star in the constellation of Leo.

The planet has a mass five times the size of Earth, which makes it the smallest extrasolar planet among the roughly 300 identified so far, Ribas said. The astronomers believe the planet could possibly be a rocky, Earth-like planet because of its size. Most of the planets found so far are gas giants like Jupiter.

But Ribas said the new planet is uninhabitable due to the close distance that it orbits its star, which is far less than that between the earth and the sun. Planet GJ 436 orbits close to its small, relatively cool star once every 5.2 Earth days and rotates every 4.2 Earth days.

This latest planet was found by analyzing distortions in the orbit of another, larger planet around the star GJ 436, a technique similar to that used more than 100 years ago to discover Neptune.

“Planets with a mass similar to Earth situated at a distance from their star which allows liquid water on the surface, in other words, a habitable planet, we’re probably a bit further from (discovering those), but we surely will in a decade,” said Ribas of Spain’s CSIC scientific research institute.

Original News Source: Reuters

Next Eclipse Dates

Wondering when the next eclipse is going to be? Book these dates into your calendar now so you won’t miss them.

Next Lunar Eclipse
The next lunar eclipse is going to be on August 16, 2008, the second eclipse of the year. Unfortunately, this will only be a partial eclipse, with the Moon passing only partly through the Earth’s shadow. The entire eclipse will be visible from Africa and Europe, and partially visible from viewers in South America, Asia and Australia.

There will be another partial eclipse on February 9, 2009. We’ll have to wait until December 21, 2010 for the next total lunar eclipse.

Next Solar Eclipse
The next solar eclipse will be on August 1, 2008. Fortunately, this will be a total solar eclipse, where the Moon passes directly in front of the Sun. Unfortunately, the path of totality passes through very northern regions. It starts in Arctic Canada, sweeps through Greenland into Northern Russia. Only in the end does it dip down into Mongolia and China.