Who Discovered Mars?

Mars is one of the 5 planets visible with the unaided eye. On any dark night, when Mars is in the sky, it’s easy to see with your own eyes. Ancient people knew about Mars, and long ago discovered that it moves from night to night compared to the stars. So it’s impossible to know who discovered Mars. That would have been one of the first humans.

Perhaps a better question to ask is: who realized that Mars is a planet? And that discovery happened with the idea that the Earth is a planet.

In ancient times, astronomers thought that the Earth was the center of the Universe, and the Sun, Moon, planets and stars orbited around us in a set of crystalline spheres. But the motions of the planets were hard to explain; they would sometimes speed up, stop, and even reverse their direction in the sky.

But the astronomer Nicolaus Copernicus developed the view that it was the Sun that was at the center of the Solar System, and the planets orbited around it. This view neatly explained the strange motions of the planets, since the Earth was also moving around the Sun, and these quirks were really just changes in perception.

Galileo was the first person to view Mars in a telescope, and he saw not much more than a bright disk. He did take many observations over the course of the year and realized that Mars gets closer and more distant, and so larger and smaller in his telescope. As telescopes got bigger and better, astronomers were able to make out the polar ice caps on Mars, and some astronomers incorrectly thought they saw a system of canals crisscrossing the surface of the planet.

But the best views of Mars came with the first robotic exploration of Mars. The first spacecraft to arrive at Mars was NASA’s Mariner 4, launched in 1964. The first spacecraft to go into orbit around Mars was Mariner 9, in 1971. These spacecraft helped take high resolution images that revealed craters, mountains and chasms; the red landscape of Mars that we’re so familiar with today.

We’ve written many articles about the discovery of planets for Universe Today. Here’s an article about the discovery of Uranus, and another about the discovery of Neptune.

If you’d like more information on Mars, check out Hubblesite’s News Releases about Mars, and here’s a link to the NASA Mars Exploration home page.

We’ve also recorded several episodes of Astronomy Cast about Mars. Start here, Episode 52: Mars.

References:
NASA Mars Exploration
NASA: The Mariner Missions

Weekend SkyWatcher’s Forecast – November 27-29, 2009

Greetings, fellow SkyWatchers! Are you ready for what’s hot and what’s not this weekend? Then start by taking a look at Anders Celsius and then journey to some challenging lunar features! Evolve your selenographic knowledge by locating Darwin and double your vision with binary stars. Monkey around? You bet! But only if it’s with a star with unusual spectral qualities that you can see! Whenever you’re ready, I’ll see you in the dark…

celsiusFriday, November 27, 2009 – Today is the birthday of Anders Celsius, born in 1701. Although you might easily recognize the name Celsius in connection with temperature, you might not know about the contributions Anders made to astronomy some three centuries ago. Born to a Swedish family of mathematicians and astronomers, one of his first achievements came when he participated in an effort to determine the true shape of Earth. He was also the very first scientist to recognize the connection between magnetism and the aurora. And, by age 39, he had become the director of an observatory. Celsius also developed the first instrument for measuring the brightness of starlight. Ever resourceful, he already possessed tools to measure position and motion but had nothing with which to gauge magnitude. His idea was so simple it was downright elegant: he simply blocked the light with identical glass plates until the star disappeared. The brighter the star, the more plates it took!

Tonight let us go from one extreme to another as we begin on the northernmost limb of the lunar surface. From the northernmost Sinus Roris, look for lens-shaped crater Markov. To Markov’s northeast is a large, flat crater with very few distinguishing characteristics. Its name is Oenopides.

pingre

If conditions are stable, look for a gray slash known as Cleostratus on the lunar limb further north of Oenopides. On the southern limb, look for familiar craters Wargentin, Nasmyth, and Phocylides. Even farther south, note the long oval Pingre.

Saturday, November 28, 2009 – On this date in 1659, Christian Huygens was busy at the eyepiece, but he wasn’t studying Saturn. This was the first time any astronomer had seen dark markings on Mars! Why don’t you try your luck at Mars tonight, too? Wait for it to rise well above atmospheric disturbance and power up! It’s too bad it isn’t – or as big (!) as close as the Moon. . .

Tonight the great Grimaldi will again capture the eye, but let’s head southeast for another featureless dark gray oval, Crueger.

crueger

Continuing south, the next crater—Darwin—is hard to see because of its rather un-craterlike appearance. Darwin is best caught by focusing on the rima that includes its eastern wall. Look for a Y formation pointing toward Crueger.

lambda_ariAlthough skies are bright, we can still see double. Locate 5-magnitude Lambda Arietis (RA 01 57 55 Dec +23 35 45) and its companion. This wide pair is an excellent challenge for binoculars. Both stars are F-spectral types and should appear ivory in color to most observers. Having trouble in binoculars? Try a finderscope of equal power and aperture. To locate Lambda, look a finger-width west-southwest of Hamal, at Alpha Arietis.

enos.jpgSunday, November 29, 2009 – On this date in 1961 Enos the Chimp was launched into fame! His story is a long and colorful one, but Enos was a true astronaut. Selected to make the first American orbital animal flight only 3 days before the launch, he flew into space on board a Mercury-Atlas 5 and completed his first orbit in just under 90 minutes. Although Enos was scheduled to complete three orbits, he was brought back due to ‘‘attitude difficulties.’’ But whose? Malfunctions caused the chimp to be repeatedly shocked when performing the correct maneuvers, but Enos continued to perform flawlessly and was said to run and jump enthusiastically on board the recovery ship. Although he died a year later from an unrelated disease, Enos the chimp remains one of our most enduring space heroes.

riccioli

Tonight, launch your way toward the Moon and see if you can spot crater Riccioli. . . You’ll find it centermost and almost on the limb!

theta_aurNow that you’ve viewed a challenging crater, would you like to have a look at a challenging double star? All you have to do is locate Theta Aurigae (RA 05 59 43 Dec +37 12 45) on the east side of the pentagonal shape of this constellation. Located about 110 light-years away, 2.7-magnitude Theta is a four star system, whose members range in magnitude from 2.7 to 10.7. Suited even to a small telescope, the brightest member—Theta B—is itself a binary at magnitude 7.2; it was first recorded by Otto Struve in 1871. The pair moves quite slowly and may take as long as 800 years to orbit at their separation of about 110 Astronomical Units (AU). The furthest member of this system was also noted by Struve as far back as 1852, but it is not a true member, with the separation only occurring thanks to Theta’s own proper motion. While you are there, be sure to note Theta’s unusual color. Although it will appear ‘‘white,’’ look closely at the diffraction caused by our own atmosphere, which acts much like a prism. You’ll notice a lot more purple and blue around this star than many others of the same spectral type. Why? Theta is a silicon star!

Until next week? Ask for the Moon, but keep on reaching for the stars!

This week’s awesome images are (in order of apppearance): Anders Celsius (widely used image), Northwest Limb Mosaic (credit—Alan Chu), Crueger (credit—Alan Chu), Lambda Arietis (credit –Palomar Observatory, courtesy of Caltech), Enos the Chimp (credit–NASA), Riccioli (credit—Alan Chu) and Theta Aurigae (credit—Palomar Observatory, courtesy of Caltech). We thank you so much!

Yellowstone National Park Volcano

Artist's impression of a what lies beneath the Yellowstone volcano. Credit: Hernán Cañellas/National Geographic

Yellowstone National Park is known for its geysers, but did you know that it is also the site of one of the world’s largest volcanoes? The same geologic activity that causes the multitude of geysers in the park is also responsible for the huge volcano located there. Scientists estimate that it is one of the largest volcanoes in the world, and so far it is the largest volcano in North America.

The volcano is 55 km by 72 km in size. Yellowstone’s volcano is in the class of super volcanoes due to its size. There is no exact definition for what qualifies as a super volcano; however, some scientists have defined it as a volcano with an eruption greater than 240 cubic miles.

Additionally, the Yellowstone Volcano does not look like the popular image of a volcano. Instead of being a conical mountain, it is a large depression in the ground like a cauldron. This type of volcanic feature is known as a caldera. It is very difficult to see the actual shape because it is covered with trees and has eroded over thousands of years.

Yellowstone National Park sits on top of a giant volcanic caldera, or an earthen cap that covers a huge reservoir of superhot liquid rock and poison gasses. Credit: IO9
Yellowstone National Park sits on top of a giant volcanic caldera, or an earthen cap that covers a huge reservoir of superhot liquid rock and poison gasses. Credit: IO9

The cause of the volcano is the hotspot on which Yellowstone is located. At a hotspot, molten mantle rock tends to rise toward the surface causing different geological activity. Volcanic eruptions from the hotspot also helped form the Snake River Plain.

Not only do volcanic eruptions occur around the Yellowstone region, but the area also experiences many earthquakes. The region experiences around 1000 to 2000 earthquakes each year, although most of them are usually quite small.

Despite the fact that the volcano has not erupted in hundreds of years, it is still active. This is a concern to scientists who have placed sensors around Yellowstone, so the volcano is continually monitored. The possible eruption of the Yellowstone Super volcano is of concern because of the enormous destruction it would cause. The last eruption was believed to be approximately 640,000 years ago.

Geologists estimate that 2 million years ago a cataclysmic series of volcanic eruptions in the Yellowsone Caldera was 2,500 times more powerful than the Mt. St. Helens eruption and perhaps was the largest, most violent volcanic eruption in the history of earth. Credit: Extreme Science
Geologists estimate that 2 million years ago a cataclysmic series of volcanic eruptions in the Yellowstone Caldera was perhaps the most violent volcanic eruption in the history of earth. Credit: Extreme Science

The eruption was on such a scale that it made the 1980 Mount St. Helen’s eruption look like nothing and result in damage and destruction many miles around. Scientists estimate that the other two eruptions from the Yellowstone Super volcano came over one and two million years ago. Since the volcano is still active, there is always a possibility it will once again erupt.

However, scientists do not anticipate that there will be another eruption in the near future, at least one on such a massive scale.

Universe Today has articles on Yellowstone eruption and Yellowstone Super Volcano.

For more information, try Yellowstone Volcano and Supervolcano.

Astronomy Cast has an episode on volcanoes hot and cold.

Sources:
http://en.wikipedia.org/wiki/Yellowstone_Caldera
http://volcanoes.usgs.gov/yvo/

Tips for Viewing the Geminid Meteor Shower

Occurring every year in mid-December, the Geminid meteor shower is commonly referred to as the most reliable meteor shower of the year. That is, it almost always puts on a great show!

The Geminid meteor shower is sure to be a stunning show this year, as the Moon will not be visible at night, so its glow will not impede your meteor viewing ability. In addition, the Geminids’ radiant is favorably positioned for most viewers at this time of year. In order to see the most meteors, I suggest the following tips:

  • The Geminid meteor shower has a very broad maximum peak. Because of this, the night on which you view the meteors isn’t critical. You will of course, see more meteors on the peak nights. This year the Geminid meteor shower’s peak is the night of December 13th-14th, 2009.
  • The best time to view a meteor shower is in the late night to early morning hours. The best time to view a meteor shower typically begins around 2 AM. This is because as the Earth rotates toward dawn, the forward velocity of the planet adds to the linear velocity of the surface and atmosphere. This has the effect of “sweeping up” more meteors.
  • If you’re not normally awake at 2 AM, like many people, simply go to sleep very early and set an alarm clock to wake you up to view the meteor shower. Trust me on this point, it is definitely worth it.
  • The Geminid meteor shower’s radiant is right near the twin bright stars Castor and Pollux in Gemini. Click the image at top right to see a map (thanks to Stellarium). The trick, however, isn’t to look towards the radiant, but to keep your eyes on the whole sky. While it’s impossible to look at the whole sky, just keep your eyes scanning and alert. This increases your chances of seeing a fleeting meteor or one out of the corner of your eye.
  • Darkness is key to proper meteor shower viewing. If you live in a city or other light polluted area, try going to a dark sky site to truly experience a meteor shower. You might be surprised how close a dark sky site is to you! Here are some tips on finding a dark sky near you.
  • Dress warm! The cold December air will seem extra cold, since you’ll be sitting outside, inactive for the most part. I also have some tips on cold-weather astronomy at Visual Astronomy. If you are too cold, go inside for a bit! Your safety is not worth seeing some meteors!
  • Keep comfortable, too! I’ve found the best way to watch meteor showers is either laying down in a sleeping bag, or on an Adirondack or other reclining lawn chair. This allows you to keep your eyes on the sky without straining your neck!
  • Keep safe! If you’re traveling to an unknown or unfamiliar area to watch the meteor shower, don’t travel alone! Take a buddy with you. Not only is this great for safety, but meteor showers should be a social event, and are fun to share with a friend!
  • Green lasers are great for pointing out celestial objects. I use one to point out objects to people, and it works much better than trying to point with your hand. Just be careful with it and do not use a laser more powerful than 5 mW.
  • Finally, if you’re feeling ambitious, take pictures! This is a real challenge, but if you’re up to it, it’s a very rewarding challenge. You’ll need a tripod and a camera that can take long exposures. Set your exposure for somewhere around 30 seconds and let it record the whole sky. If a meteor crosses the field of view, it will be captured, and you can keep it forever!

So using these tips, you can get the most out of your Geminid viewing experience!

Eta Carinae- A Naked Eye Enigma

Credit: X-ray: NASA/CXC/GSFC/M.Corcoran et al.; Optical: NASA/STScI

[/caption]

Eta Carinae is a beast of a star. At more than 100 solar masses and 4 million times the luminosity of our Sun, eta Car balances dangerously on the edge of stellar stability and it’s ultimate fate: complete self-destruction as a supernova. Recently, Hubble Space Telescope observations of the central star in the eta Carinae Nebula have raised an alert on eta Car among the professional community. What they discovered was totally unexpected.

“It used to be, that if you looked at eta Car you saw a nebula and then a faint little core in the middle” said Dr. Kris Davidson, from the University of Minnesota. “Now when you look at it, it’s basically the star with a nebula. The appearance is completely different. The light from the star now accounts for more than half the total output of eta Car. I didn’t expect that to happen until the middle of this century. It’s decades ahead of schedule. We know so little about these very massive objects, that if eta Car becomes a supernova next Thursday we should not be very surprised.”

In 1843, eta Carinae underwent a spectacular eruption, making it the second brightest star in the sky behind Sirius. During this violent episode, eta Car ejected 2 to 3 solar masses of material from the star’s polar regions. This material, traveling at speeds close to 700 km/s, formed two large, bipolar lobes, now known as the Homunculus Nebula. After the great eruption, Eta Car faded, erupted again briefly fifty years later, then settled down, around 8th magnitude. Davidson picks up the story from there.

This light curve depicts the visual apparent brightness of Eta Car from 1822 to date. It contains visual estimates (big circles), photographic (squares), photoelectric (triangles) and CCD (small circles) observations. All of them have been fitted for consistency of the whole data. Red points are recent observations from La Plata (Feinstein 1967; Fernández-Lajús et al., 2009, 2010). Used by permission.
This light curve depicts the visual apparent brightness of Eta Car from 1822 to date. It contains visual estimates (big circles), photographic (squares), photoelectric (triangles) and CCD (small circles) observations. All of them have been fitted for consistency of the whole data. Red points are recent observations from La Plata (Feinstein 1967; Fernández-Lajús et al., 2009, 2010). Used by permission.

“Around 1940, Eta suddenly changed its state. The spectrum changed and the brightness started to increase. Unfortunately, all this happened at a time when almost no one was looking at it. So we don’t know exactly what happened. All we know is that by the 1950’s, the spectrum had high excitation Helium lines in it that it didn’t have before, and the whole object, the star plus the Homunculus, was gradually increasing in brightness. In the past we’ve seen three changes of state. I suspect we are seeing another one happening now.”

During this whole time eta Car has been shedding material via its ferocious stellar winds. This has resulted in an opaque cloud of dust in the immediate vicinity of the star. Normally, this much dust would block our view to the star. So how does Davidson explain this recent, sudden increase in the luminosity of eta Carinae?

“The direct brightening we see is probably the dust being cleared away, but it can’t be merely the expansion of the dust. If it’s clearing away that fast, either something is destroying the dust, or the stellar wind is not producing as much dust as it did before. Personally, I think the stellar wind is decreasing, and the star is returning to the state it was in more than three hundred years ago. In the 1670’s, it was a fourth magnitude, blue, hot star. I think it is returning to that state. Eta Carinae has just taken this long to readjust from its explosion in the 1840’s.”

After 150 years what do we really know about one of the great mysteries of stellar physics? “We don’t understand it, and don’t believe anyone who says they do,” said Davidson.  “The problem is we don’t have a real honest-to-God model, and one of the reasons for that is we don’t have a real honest-to-God explanation of what happened in 1843.”

Can amateur astronomers with modest equipment help untangle the mysteries of eta Carinae? Davidson think so, “The main thing is to make sure everyone in the southern hemisphere knows about it, and anyone with a telescope, CCD or spectrograph should have it pointed at eta Carinae every clear night.”

The View from Down Under

Something that baffled me throughout my childhood, growing up in Australia, was the frequent references to the Man in the Moon, in children’s books and other popular media. I just couldn’t see it.

Only in my adult years have I put two and two together and realized that all those references were made by people from the Northern Hemisphere.

South of the equator we really are down under, even in astronomical terms. All the stuff you can see in the night sky around the celestial equator and the ecliptic we can see too, but it’s all upside down (or from our point of view, right side up).

So the lunar maria you see on the Moon’s surface, we can see too, but upside down none of it looks anything like a human face.

And Orion’s Belt? Nope, don’t get that either. obeltconstWhat we see is an asterism we like to call ‘the Saucepan’ because what you see as a dagger hanging off a belt, we see as a handle rising from a pot.

We’ve also got our own down under Aurora Australis, although you’d have to105412main_High_res_jan05 climb a mountain in Tasmania, or even better catch an icebreaker to Antarctica, to see it.

But look, I’m envious. You’ve got a pole star, Polaris, which we never get to see. And you get a good view of the Andromeda Galaxy, which just barely peeks over our northern horizon around summer.

Down under, we have to use the Southern Cross to find the southern celestial pole. The Cross contains some of the southern sky’s brightest stars. During the winter months when it’s high in the sky, it’s generally the first group of stars to become visible after sunset, along with the nearby Pointer stars – which are actually Alpha and Beta Centauri.

The Southern Cross is kite-shaped and if you draw a line out from the kite’s long axis and another line out from between the Pointers, those two lines meet at the southern celestial pole. From there, just drop your hand straight down to the horizon and you are pointing due South. Cheaper than a compass.south

We also have a couple of dwarf galaxies to look at, being the Large and Small Magellanic Clouds. OK, they are much smaller than Andromeda, but they are also a lot closer and hence appear much bigger. To the naked eye, they really do look like a couple of faint, wispy clouds.

For most southern sky observers, the Magellanic Clouds and the Southern Cross are circumpolar, slowly spinning around the southern celestial pole each night without ever setting.

You probably know that the story about how water spirals down the plug hole in opposite directions on either side of the equator is just urban myth. But it is the case that while stars in the Northern Hemisphere appear to spin slowly around Polaris in an anti-clockwise direction, all our stars spin around the southern celestial pole in a clockwise direction.

It’s true – fair dinkum.

Quintessence

Quintessence is one idea – hypothesis – of what dark energy is (remember that dark energy is the shorthand expression of the apparent acceleration of the expansion of the universe … or the form of mass-energy which causes this observed acceleration, in cosmological models built with Einstein’s theory of general relativity).

The word quintessence means fifth essence, and is kinda cute … remember Earth, Water, Fire, and Air, the ‘four essences’ of the Ancient Greeks? Well, in modern cosmology, there are also four essences: normal matter, radiation (photons), cold dark matter, and neutrinos (which are hot dark matter!).

Quintessence covers a range of hypotheses (or models); the main difference between quintessence as a (possible) explanation for dark energy and the cosmological constant Λ (which harks back to Einstein and the early years of the 20th century) is that quintessence varies with time (albeit slooowly), and can also vary with location (space). One version of quintessence is phantom energy, in which the energy density increases with time, and leads to a Big Rip end of the universe.

Quintessence, as a scalar field, is not the least bit unusual in physics (the Newtonian gravitational potential field is one example, of a real scalar field; the Higgs field of the Standard Model of particle physics is an example of a complex scalar field); however, it has some difficulties in common with the cosmological constant (in a nutshell, how can it be so small).

Can quintessence be observed; or, rather, can quintessence be distinguished from a cosmological constant? In astronomy, yes … by finding a way to observed (and measure) the acceleration of the universe at widely different times (quintessence and Λ predict different results). Another way might be to observe variations in the fundamental constants (e.g. the fine structure constant) or violations of Einstein’s equivalence principle.

One project seeking to measure the acceleration of the universe more accurately was ESSENCE (“Equation of State: SupErNovae trace Cosmic Expansion”).

In 1999, CERN Courier published a nice summary of cosmology as it was understood then, a year after the discovery of dark energy The quintessence of cosmology (it’s well worth a read, though a lot has happened in the past decade).

Universe Today articles? Yep! For example Will the Universe Expand Forever?, More Evidence for Dark Energy, and Hubble Helps Measure the Pace of Dark Energy.

Astronomy Cast episodes relevant to quintessence include What is the universe expanding into?, and A Universe of Dark Energy.

Source: NASA

Baby Brown Dwarfs Provide Clues to Solve Mystery

Why – and how — do brown dwarfs form? Since these cosmic misfits fall somewhere between planets and stars in terms of their temperature and mass, astronomers haven’t yet been able to determine how they form: are their beginnings like planets or stars? Now, the Spitzer Space Telescope has found what could be two of the youngest brown dwarfs. While astronomers are still looking to confirm the finding of these so-called “proto brown dwarfs” it has provided a preliminary answer of how these unusual stars form.

The baby brown dwarfs were found in Spitzer data collected in 2005. Astronomers had focused their search in the dark cloud Barnard 213, a region of the Taurus-Auriga complex well known to astronomers as a hunting ground for young objects.

“We decided to go several steps back in the process when (brown dwarfs) are really hidden,” said David Barrado of the Centro de Astrobiología in Madrid, Spain, lead author of the paper, published in the Astronomy & Astrophysics journal. “During this step they would have an (opaque) envelope, a cocoon, and they would be easier to identify due to their strong infrared excesses. We have used this property to identify them. This is where Spitzer plays an important role because Spitzer can have a look inside these clouds. Without it this wouldn’t have been possible.”

Barrado said the findings potentially solve the mystery about whether brown dwarfs form more like stars or planets. The team’s findings? Brown dwarfs form like low-mass stars.

Brown dwarfs are cooler and more lightweight than stars and more massive (and normally warmer) than planets. They are born of the same dense, dusty clouds that spawn stars and planets. But while they may share the same galactic nursery, brown dwarfs are often called “failed” stars because they lack the mass of their hotter, brighter stellar siblings. Without that mass, the gas at their core does not get hot enough to trigger the nuclear fusion that burns hydrogen — the main component of these molecular clouds — into helium. Unable to ignite as stars, brown dwarfs end up as cooler, less luminous objects that are more difficult to detect — a challenge that was overcome in this case by Spitzer’s heat-sensitive infrared vision.

This artist's rendering gives us a glimpse into a cosmic nursery as a star is born from the dark, swirling dust and gas of this cloud. Image credit: NASA/JPL-Caltech
This artist's rendering gives us a glimpse into a cosmic nursery as a star is born from the dark, swirling dust and gas of this cloud. Image credit: NASA/JPL-Caltech

Young brown dwarfs also evolve rapidly, making it difficult to catch them when they are first born. The first brown dwarf was discovered in 1995 and, while hundreds have been found since, astronomers had not been able to unambiguously find them in their earliest stages of formation until now.

Spitzer’s longer-wavelength infrared camera penetrated the dusty natal cloud to observe STB213 J041757. The data, confirmed with near-infrared imaging from Calar Alto Observatory in Spain, revealed not one but two of what would potentially prove to be the faintest and coolest brown dwarfs ever observed.

The twins were observed from around the globe, and their properties were measured and analyzed using a host of powerful astronomical tools. One of the astronomers’ stops was the Caltech Submillimeter Observatory in Hawaii, which captured the presence of the envelope around the young objects. That information, coupled with what they had from Spitzer, enabled the astronomers to build a spectral energy distribution — a diagram that shows the amount of energy that is emitted by the objects in each wavelength.

From Hawaii, the astronomers made additional stops at observatories in Spain (Calar Alto Observatory), Chile (Very Large Telescopes) and New Mexico (Very Large Array). They also pulled decade-old data from the Canadian Astronomy Data Centre archives that allowed them to comparatively measure how the two objects were moving in the sky. After more than a year of observations, they drew their conclusions.

“We were able to estimate that these two objects are the faintest and coolest discovered so far,” Barrado said. This theory is bolstered because the change in brightness of the objects at various wavelengths matches that of other very young, low-mass stars.

While further study will confirm whether these two celestial objects are in fact proto brown dwarfs, they are the best candidates so far, Barrado said. He said the journey to their discovery, while difficult, was fun. “It is a story that has been unfolding piece by piece. Sometimes nature takes its time to give up its secrets.”

Lead image caption: This image shows two young brown dwarfs, objects that fall somewhere between planets and stars in terms of their temperature and mass. Image credit: NASA/JPL-Caltech/Calar Alto Obsv./Caltech Sub. Obsv.

Source: JPL

Weekend SkyWatcher’s Forecast – November 20 -22, 2009

Greetings, fellow SkyWatchers! Yep. The Moon is back, but this weekend can still present some great opportunities for enjoying astronomy. If you’re up early or out late? Well, hey… The Leonid meteor shower is still producing activity! Why not take a few minutes to learn about a great variable star you can follow without optical aid or study a new lunar feature? There’s plenty to do for binoculars and small telescopes – and perhaps even a clever new study you haven’t looked at yet! Whenever you’re ready, I’ll see you in the dark…

edwin_hubbleFriday, November 20, 2009 – Today celebrates the birth of a significant astronomer, Edwin Hubble. Born on this date in 1889, Hubble became the first American astronomer to identify Cepheid variables in M31, which in turn established the extragalactic nature of the spiral nebulae. Continuing with the work of Carl Wirtz, and using Vesto Slipher’s redshifts, Hubble could then calculate the velocity–distance relation for galaxies. This has become known as Hubble’s Law and demonstrates the expansion of our universe.

Tonight we’ll pass the Moon and head just a little more than a fist-width west of the westernmost bright star in Cassiopeia, to have a look at Delta Cephei (RA 22 29 10 Dec +58 24 54). This is the most famous of all variable stars and the granddaddy of all Cepheids. Discovered in 1784 by John Goodricke, its changes in magnitude are not due to a revolving companion but rather the pulsations of the star itself.

delta_cephi

Ranging over almost a full magnitude in 5 days, 8 hours, and 48 minutes precisely, Delta’s changes can easily be followed by comparing it to nearby Zeta and Epsilon. Upon reaching its dimmest point, it will brighten rapidly in a period of about 36 hours yet take 4 days to slowly dim again. Take time out of your busy night to watch Delta change and change again. It’s only 1,000 light-years away and doesn’t even require a telescope! (But even binoculars will show its optical companion.)

Saturday, November 21, 2009 – Tonight let’s go to the southern lunar cusp to identify two small but very nice craters. Using previous study Fabricus, continue south and look for the pair connected side-to-side rather than end-to-end.

steinheil and watt

This is crater Watt, with Steinheil intruding on it. Remember the distance traveled south from Fabricus to this pair and extend that distance even further south. Seen on the limb is crater Biela. If conditions are stable, you might pick up a tiny black point in Beila’s west wall, Biela C.

ngc225Before we retire to the shadows tonight, let’s study the small, open cluster NGC 225, located a finger-width northwest of Gamma Cassiopeiae (RA 00 43 42 Dec +61 47 00). This 7th magnitude collection has been described by some as looking like a sailboat. A fascinating name might be the ‘‘Metamorphosis Cluster,’’ since the southwestern region of the cluster looks like a butterfly asterism and, to the northeast is the caterpillar-like asterism. Although just barely detectable as an unresolved patch through binoculars on a dark night, tonight’s Moon means that magnification is needed just to make out its half-dozen brighter 9th magnitude members. Modest scopes should reveal two dozen stars to magnitude 12.

Sunday, November 22, 2009 – On the lunar surface tonight, the three rings of Theophilus, Cyrillus, and Catharina will emerge, but tonight let’s power up on Theophilus and see what we can find! The area just northeast of Theophilus—where Mare Tranquillitatis and Mare Nectaris join—is called Sinus Asperitatis.

theophilus

Toward its center, you will see the remains of a once grand (nameless) crater holding the younger, sharper Torricelli in its center. Dropping back to Theophilus, just outside of its east wall, you will also find a young crater, Madler. As you head east across the northern shore of Mare Nectaris, look carefully for two partial rings. The northernmost is so eroded that it never received a name, while a slight, faint horseshoe marks all that remains of Daguerre.

DoDz1Tonight let’s test our starhopping and observing talents by starting first with a beautiful double – Gamma Arietis. Now look about a fist-width east-southeast for dim little Pi. When you have Pi centered, move about half a degree southwest for an alternative catalog study—DoDz 1.

Although you might find this sparkling double handful of stars of little interest, think twice before you hop on. Although DoDz studies are far more scattered and less populous than most galactic clusters, it doesn’t make them less interesting. What you are looking at are basically the fossils of once active and more concentrated regions of stars. As the cluster has matured, the lower mass members have been stripped away and joined the general population. Known as a ‘‘dissolving cluster,’’ DoDz 1 is all that’s left of a far grander collection. Very ancient. . .yet still very beautiful!

Enjoy your celestial adventures!

This week’s awesome images are (in order of appearance): Edwin Hubble (widely used public image), Delta Cephei (credit—Palomar Observatory, courtesy of Caltech), Steinheil and Watt at limb (credit—Alan Chu), NGC 225 (credit—Palomar Observatory, courtesy of Caltech), Theophilus, Cyrillus, and Catharina (credit—Alan Chu) and Dolidze-Dzimselejsvili 1 (credit—Palomar Observatory, courtesy of Caltech). We thank you so much!

How Many Continents Are There?

The current tectonic plates.

[/caption]Not everyone on this planet is in agreement as with regards to the total number of continents. So how many continents are there then, according to the disagreeing parties?

Well, in Russia, Eastern Europe and Japan, the people there consider the continents of Europe and Asia as one, known as Eurasia. In other places in the world, North and South America are combined as one American continent while separating Europe and Asia instead. Thus, according to these two views, there should only be 6 continents.

There are even geographical views that prefer the presence of both a Eurasian as well as one American continent. These geographers therefore contend that there should only be 5 continents.

And if you thought that would be the lowest number, think again. There are others still who are more comfortable with a 4-continent view.

These people argue that, since Europe and Asia are actually part of one great land mass and that Asia and Africa are actually joined by an isthmus (Isthmus of Suez), as are the two Americas (being joined by the Isthmus of Panama), then there should be an Afro-Eurasian continent in addition to one American continent, Antarctica, and Australia.

But how many continents are there according to the more widely accepted view? In the most widely accepted view, there are 7 continents all in all: Asia, Africa, Europe, North America, South America, Antarctica, and Australia.

This model is preferred by the Chinese and majority of the English-speaking countries.

The final verdict as to how many continents are there might lean more on the larger numbers once the effects of global warming kick in. Once sea water levels rise, the separation between the two Americas as well as that between Africa and Asia will be more noticeable. Only the combined Europe and Asia model (a.k.a. 6-continent model) and the 7-continent model would remain.

Hundreds of millions of years from now, we really don’t know how many continents there would be. According to the continental drift theory, moving tectonic plates may rearrange the pieces of the puzzle that are the Earth’s continents.

What used to be one super continent, known as Pangaea has now been broken into 4, 5, 6, or 7 continents – depending on which side you’re more comfortable with. Therefore, its plausible, the Earth being round and all, that some of these continents will later on combine after drifting away for some time.

You can read more about plate tectonics here in Universe Today. Here are the links:

There’s more about it at USGS. Here are a couple of sources there:

Here are two episodes at Astronomy Cast that you might want to check out as well:

Sources:
Wikipedia
National Geographic