Megaparsec

velocity vs distance, from Hubble's 1929 paper

[/caption]
A megaparsec is a million parsecs (mega- is a prefix meaning million; think of megabyte, or megapixel), and as there are about 3.3 light-years to a parsec, a megaparsec is rather a long way. The standard abbreviation is Mpc.

Why do astronomers need to have such a large unit? When discussing distances like the size of a galaxy cluster, or a supercluster, or a void, the megaparsec is handy … just as it’s handy to use the astronomical unit (au) for solar system distances (for single galaxies, 1,000 parsecs – a kiloparsec, kpc – is a more natural scale; for cosmological distances, a gigaparsec (Gpc) is sometimes used).

Reminder: a parsec (a parallax of one arc-second, or arcsec) is a natural distance unit (for astronomers at least) because the astronomical unit (the length of the semi-major axis of the Earth’s orbit around the Sun, sorta) and arcsec are everyday units (again, for astronomers at least). Fun fact: even though the first stellar parallax distance was published in 1838, it wasn’t until 1913 that the word ‘parsec’ appeared in print!

As a parsec is approximately 3.09 x 1016 meters, a megaparsec is about 3.09 x 1022 meters.

You’ll most likely come across megaparsec first, and most often, in regard to the Hubble constant, which is the value of the slope of the straight line in a graph of the Hubble relationship (or Hubble’s Law) – redshift vs distance. As redshift is in units of kilometers per second (km/s), and as distance is in units of megaparsecs (for the sorts of distances used in the Hubble relationship), the Hubble constant is nearly always stated in units of km/s/Mpc (e.g. 72 +/- 8 km/s/Mpc, or 72 +/- 8 km s-1 Mpc-1 – that’s its estimated value from the Hubble Key Project).

John Huchra’s page on the Hubble constant is great for seeing megaparsecs in action.

Given the ubiquity of megaparsecs in extragalactic astronomy, hardly any Universe Today article on this topic is without its mention! Some examples: Chandra Confirms the Hubble Constant, Radio Astronomy Will Get a Boost With the Square Kilometer Array, and Astronomers Find New Way to Measure Cosmic Distances.

Questions Show #7, an Astronomy Cast episode, has megaparsecs in action, as does this other Questions Show.

How Galaxies Lose Their Gas

Galaxy mergers, such as the Mice Galaxies will be part of Galaxy Zoo's newest project. Credit: Hubble Space Telescope
The Mice galaxies, merging. Credit: Hubble Space Telescope

As galaxies evolve, many lose their gas. But how they do this is a point of contention. One possibility is that it is used to form stars when the galaxies undergo intense periods of star formation known as starburst. Another is that when large galaxies collide, the stars pass through one another but the gas gets left behind. It’s also possible that the gas is pulled out in close passes to other galaxies through tidal forces. Yet another possibility involves a wind blowing the gas out as galaxies plunge through the thin intergalactic medium in clusters through a process known as ram pressure.

A new paper lends fresh evidence to one of these hypotheses. In this paper, astronomers from the University of Arizona were interested in galaxies that displayed long gas tails, much like a comet. Earlier studies had found such galaxies, but it was unclear whether or not this gas tail was pulled out from tidal forces, or pushed out from ram pressure.

To help determine the cause of this the team used new observations from Spitzer to look for subtle differences in the causes of a tail following the galaxy ESO 137-001. In cases where tails are known to be pulled out tidally (such as in the M81/M82 system), there “is no physical reason why the gas would be preferentially stripped over stars.” Stars from the galaxy are pulled out as well and often large amounts of new star formation are induced. Meanwhile, ram pressure tails should be largely free of stars although some new star formation may be expected if there is turbulence in the tail which causes regions of higher density (think like the wake of a boat).

Examining the tail spectroscopically, the team was unable to detect the presence of large numbers of stars suggesting tidal processes were not responsible. Furthermore, the disk of the galaxy seemed relatively undisturbed by gravitational interactions. To support this, the team calculated the relative strengths of the forces acting on the galaxy. They found that, between the tidal forces acting on the galaxy from its parent cluster, and its own centripetal forces, the internal forces where greater, which reaffirmed that tidal forces were an unlikely cause for the tail.

But to confirm that ram pressure was truly responsible, the astronomers looked at other parameters. First they estimated the gravitational force for the galaxy. In order to strip the gas, the force generated by the ram pressure would have to exceed the gravitational one. The energy imparted on the gas would then be measurable as a temperature in the gas tail which could be compared to the expected values. When this was observed, they found that the temperature was consistent with what would be necessary for ram stripping.

From this, they also set limits on how long gas could last in such a galaxy. They determined that in such circumstances, the gas would be entirely stripped from a galaxy in ~500 million to 1 billion years. However, because the density of the gas through which the galaxy would slowly become denser as it passed through the more central regions of the cluster, they suggest the timescale would be much simpler. While this timescale say seem long, it is still shorter than the time it takes such galaxies to make a full orbit in their cluster. As such, it is possible that even in one pass, a galaxy may lose its gas.

If the gas loss occurs on such short timescales, this would further predict that tails like the one observed for ESO 137-001 should be rare. The authors note that an “X-ray survey of 25 nearby hot clusters only discovered 2 galaxies with X-ray tails.”

Although this new study in no way rules out other methods of removing a galaxy’s gas, this is one of the first galaxies for which the ram stripping method is conclusively demonstrated.

Source:

A Warm Molecular Hydrogen Tail Due to Ram Pressure Stripping of a Cluster Galaxy

Exobiology

Exobiology (same thing as astrobiology) is about life in space (on other planets, and moons; in other solar systems): where it is, what it is, how it started, and how it evolved (all studied scientifically, of course). Because the origin of life right here on Earth, and its early evolution, is essentially unknown, and because of the distinct possibility of similiarities with the origin (and early evolution) of life elsewhere in the universe, exobiology includes research into abiogenesis (and early, and extreme, life on Earth).

Exobiology is very much a multi-disciplinary field, drawing on biology, chemistry, geology (and planetary science), physics, and astronomy.

Because we have a sample of just one – life on Earth – it is difficult to make anything but the most general decisions on what lines of exobiology research are likely to be productive (keep in mind that null results can, of course, be quite productive). Conservatively, looking for planets like Earth in orbit around stars like the Sun (in age as well as mass, metallicity, etc), and looking for clues for fossil life in planetary environments like those found today on Earth (e.g. early Mars) seem better options than investigating possible silicon-based life (to take just one example).

As the number of exosolar (or extrasolar) planetary systems known continues to grow, quickly, discovering the prevalence of Earth-mass planets, in goldilocks orbital zones, seems like a good idea … so today we have the Kepler mission and COROT.

As the early Mars becomes better understood – and the widespread distribution of liquid water then – so today we have plans for the Mars Science Laboratory and ExoMars (the discovery of methane in the Martian atmosphere certainly spurs such developments).

Less conservatively, the discovery of life around black smokers and sites like Lost City (not to mention entire ecosystems within crustal rocks … several km beneath the surface) sparked interest in the possibility of life in Europa, on Titan, even Enceladus (life – albeit rather simple life – we now know does not need to depend, ultimately, on the Sun’s (or another star’s) radiant energy … think chemolithoautotrophs).

Did you know that NASA has an exobiology branch? Check it out! Duke University’s Chemistry Department has an interesting Introduction to Exobiology you might find interesting too.

Universe Today stories on exobiology? Yep, lots; here’s a random selection: Martian Explorers Should Be Looking for Fossils, Did Life Arrive Before the Solar System Even Formed?, Extremophile Hunt Begins in Antarctica, Implications for Exobiologists , and New Targets to Search for Life on Europa.

Any Astronomy Cast episodes on exobiology? Yep … but it’s called Astrobiology.

Sources: NASA, ESA

Asterism

Kemble's Cascade (Credit: Walter MacDonald)

[/caption]
The Big Dipper is an asterism (well-known to those who live in the northern hemisphere), so is the False Cross (well-known to those who live in the southern hemisphere). Asterisms are easily recognized pattern of *s*t*a*r*s* (but not a constellation).

The sky is full of asterisms easily seen without a telescope or binoculars: Summer Triangle, Great Square of Pegasus, the W in Cassiopeia, Frying Pan, Orion’s Belt, … it’s a long list.

The Southern Cross is not an asterism, strictly speaking, because it’s a constellation (Crux).

An asterism can take in parts of more than one constellation; for example, the Square of Pegasus has three stars in Pegasus (the three brightest, alpha, beta, and gamma Peg), and one in Andromeda (alpha And).

Some well-known asterisms are visible only through a telescope or binoculars; for example the Coathanger, and Kemble’s Cascade.

A couple (at least) of open clusters are also asterisms – the Hyades and the Pleiades (also known as the Seven Sisters).

Some clear, fixed features in the night sky, with well-known names, are not asterisms or constellations … the Coalsack for example, is a dark cloud in the plane of the Milky Way which blocks its light, and the Magellanic Clouds are dwarf, satellite galaxies of our own.

As astronomy in many cultures developed independently of the West (ancient Greece, Rome, etc), many of the commonly recognized constellations in those cultures correspond to asterisms … see if you can recognize some of the Chinese ones!

A particularly interesting kind of constellation is the dark constellation; instead of joining up bright stars to make an easily recognized figure, some cultures linked various dark nebulae in the Milky Way; for example the Emu in the Sky of the Australian Aborigines (and no, these are not asterisms).

SEDS (Students for the Exploration and Development of Space) has a concise list of asterisms easily visible without binoculars, or a telescope (though you may have to go to the opposite hemisphere to see them all!).

Asterisms are mentioned in many of Universe Today’s Weekend SkyWatcher’s Forecasts (August 21-23, 2009, for example), in its articles on Constellations (e.g. Orion), and Kids Astronomy ones (e.g. Finding the Summer Triangle).

Blood Moon



A blood moon is the first full moon after a harvest moon, which is the full moon closest to the fall equinox. Another name for a blood moon is a hunter’s moon.

Before the advent of electricity, farmers used the light of the full moons to get work done. The harvest moon was a time they could dedicate to bringing in their fall harvest. And so a month later is the blood moon, or the hunter’s moon. This was a good time for hunters to shoot migrating birds in Europe, or track prey at night to stockpile food for Winter.

A full moon occurs every 29.5 days, so a blood moon occurs about a month after the harvest moon. A blood moon is just a regular full moon. It doesn’t appear any brighter or redder than any other full moon. The distance between the Earth and the Moon can change over the course of the month. When the moon is at its closest, a full moon can appear 10% larger and 30% brighter than when it’s further away from the Earth.

A blood moon will actually turn red when it matches up with a lunar eclipse. These occur about twice a year, so blood moons match up with lunar eclipses about every 6 years or so. At the time of this writing, the next blood moon lunar eclipse will be in 2015.

We’ve written many articles about the Moon for Universe Today. Here’s an article about the discovery of water on the Moon, and here’s an article about a lava tube on the Moon.

If you’d like more info on the Moon, check out NASA’s Solar System Exploration Guide on the Moon, and here’s a link to NASA’s Lunar and Planetary Science page.

We’ve also done several episodes of Astronomy Cast about the Moon. Here’s a good one, Episode 17: Where Does the Moon Come From?

See the Invisible Sky with Chromoscope

Screenshot of the new Chromoscope online tool.

[/caption]
Unless you’re Superman or a rattlesnake and can see in X-ray or infrared, there are aspects of night sky you are missing out on. These days, the wonderful assortment of telescope and spacecraft data at our disposal allow us to “see” our universe in the different wavelengths which otherwise are invisible to our limited human vision. Now, there is a quick and easy way to take advantage of this data to explore various spectra, and it’s portable, too. At the dotAstronomy Conference today, a group of astronomers have revealed a new online tool: Chromoscope. The site shows the sky in a range of wavelengths, from high-energy gamma rays through to the longest radio waves, and allows users to move easily around the night sky and switch seamlessly between different wavelengths.

“We wanted to see the whole sky in the different wavelengths,” said Stuart Lowe, lead developer of the project, from the University of Manchester. “You can do that with Google Sky and WorldWide Telescope, but we also wanted to have the ability to use it without an internet connection. You can download Chromoscope to a computer and run it on your laptop, or use it during a presentation where you don’t have access to the internet.”

Additionally, the entire platform is small enough that it can be downloaded to a memory stick and shared with others.

A standard, modern, web browser is all that you need to use Chromoscope so there is no need to install any extra software, plugins or learn a new interface. Being platform independent means that whether you use Windows, Mac or Linux, it should still be accessible.

Plus, it is extremely easy to use.

“Chromoscope sheds new light on familiar objects,” said project member Robert Simpson, from Cardiff University, “such as the Orion nebula, our closest stellar nursery. This view of the Universe has been familiar to professional astronomers for a long while, but Chromoscope makes it accessible to everyone.”

This video of how to use Chromoscope was created by Douglas Pierce-Price, one of the attendees at the dotAstronomy conference:

Chromoscope was created using public-domain datasets from a number of all-sky astronomy projects. It has a simple user-interface that lets you easily move around the sky and fade between wavelengths, illustrating the similarities and differences between what is visible at each wavelength.

“This allows people to see the connections between the night sky we see with our own eyes and the sky that astronomers explore in different wavelengths, such as radio and the infrared,” said Lowe.

The project involves data from ROSAT (X-ray), the Digital Sky Survey (optical), IRAS (infrared), WMAP (microwave) and other all-sky astronomical surveys. There are more wavelengths lined up and ready to go in the near future.

Lowe said the most challenging aspect of the project was building the “slippy map” similar to what is used on Google Sky, from the ground up. “The other challenge was compiling all the data in the different wavelengths in a form that we could use and make it interchangeable.”

Check out Chromoscope!

Vatican Astronomer on the Colbert Report

The Colbert Report Mon – Thurs 11:30pm / 10:30c
Gold, Frankincense and Mars – Guy Consolmagno
www.colbertnation.com
Colbert Report Full Episodes Political Humor U.S. Speedskating

The curator of meteorites at the Vatican, Guy Consolmagno, SJ was on the Colbert Report Tuesday to talk about the existence of extraterrestrials with Colbert. Consolmagno is author of a book about astronomy and its relation to the Catholic faith. Of course, Colbert handled the discussion in his own tongue-in-cheek joking manner, but Consolmagno was a good sport. This is just another in a series of public media events illustrating the Vatican’s position on the possibility of alien existence.

The Pope’s chief astronomer, Rev. Jose Gabriel Funes, announced last May that belief in the existence of extraterrestrial life is not in conflict with faith in God. Last month, the Vatican held a 6-day international conference to examine the likelihood of finding extraterrestrials, and discussing the impact such a finding would have on faith in God. During the conference, many scientists presented on the scientific evidence available on the possibility that aliens exist.

How Big is Mars?

Mars

[/caption]Planet Mars’ Olympus Mons holds the record for the tallest known peak in the entire Solar System. Having a height three times taller than Mount Everest’s and a base wide enough to prevent an observer at the base from seeing the top, you would have expected Mars to be on a relatively big planet. But did you know that Mars is much smaller than Earth? So how big is Mars?

The radius of Mars is only about half that of the Earth’s radius; roughly 3,396 km at the equator and 3,376 km at the poles. For comparison, the earth’s equatorial radius is 6,378 km, while its polar radius is 6,357 km.

These radii give Mars a surface area roughly only 28.4% of Earth’s or 144,798,500 km2. The Pacific Ocean is even larger, with an area of roughly 169,200,000 km2.

The dimensions of Mars also gives it a volume approximately equal to 1.6318×1011 km2 and a mass approximately equal to 6.4185×1023 kg. That’s only about 15.1% and 10.7% that of the Earth’s, respectively.

Despite its noticeably smaller size than the Earth, Mars has more majestic geographical features.

For instance, there’s Valles Marineris, a 4,000 km-long and 7 km-deep canyon that spans about one-fifth of the entire planet’s circumference. It is so long that it’s even longer than the length of Europe. If you compare the Grand Canyon to it, Colorado’s pride and joy won’t look so grand anymore.

Want to know how long the Grand Canyon is? 446 km. That’s very long, yes. But that’s only a little over 10% the length of Valles Marineris.

That’s not the only large geographical feature on Mars. Ma’adim Vallis, is another canyon on Mars that’s larger then the Grand Canyon, with a length of 700 km. Then there’s an impact crater that’s been found to be larger than the combined surface area of the continents of Asia, Europe, and Australia.

Now that you know about these extremely majestic geographical features on Mars, the next time someone asks you, “How big is Mars?” you can tell them how it is much smaller than the Earth … but you can also add the salient features that make the Red Planet much more interesting when it comes to a discussion on sizes.

We’ve got more articles about the Planet Mars here on Universe Today. Click on that link or read about interesting facts about the Planet Mars.

There’s more from NASA: “Unmasking the Face on Mars” and “Mars Shoreline Tests: Massifs in the Cydonia Region”

Here are two episodes at Astronomy Cast that you might want to check out as well:
Stellar Roche Limits, Seeing Black Holes, and Water on Mars
The Search for Extraterrestrial Intelligence

Reference:
NASA

Dwarf Star

A comparison of the Sun in its yellow dwarf phase and red giant phase

[/caption]
A dwarf star is a star that is not a giant or supergiant … in other words, a dwarf star is a normal star! Of course, some dwarf stars are much smaller (less massive, have a smaller radius, etc) than normal (or main sequence, not really massive) stars … and these have names, like white dwarf, red dwarf, brown dwarf, and black dwarf. Our very own Sol (the Sun) is a dwarf star … a yellow dwarf.

Looking more closely at this rather confusing class of objects: a dwarf star has a mass of up to about 20 sols, and a luminosity (a.k.a. intrinsic brightness) of up to about 20,000 sols (‘sol’ is a neat unit; it can mean ‘the mass of the Sun’, or ‘the luminosity of the Sun’, or …!). So just about every star is a dwarf star! Why? Because most stars are on the main sequence (which means almost all have luminosities below 20,000 sols), and only a tiny handful of main sequence stars are more massive than 20 sols. In addition, once a star has burned through all its fuel, it becomes a white dwarf (and, one day, a black dwarf), all of which are dwarf stars by this definition.

The most interesting class of dwarf star is, perhaps, the black dwarf star; it’s hardly a star at all (it doesn’t burn any fuel, except, perhaps, deuterium, for a few million years or so).

So why do astronomers have this classification at all? Hitting the history books gives us a clue … back when spectroscopy was getting started, among astronomers – and well before there was any kind of astronomy except that in the optical (or visual) waveband; think the second half of the 19th century – a curious fact about stars was discovered: the spectra of stars with the same colors could still be very different (and when their distances were estimated, these spectral differences were found to track luminosity). So while dwarf stars overwhelmingly dominate, in terms of numbers, the giants (and sub-giants, and supergiants) pretty much rule in terms of what you can see with your unaided vision.

Neatly linking one kind of dwarf (the Sun, as a yellow dwarf) to another (white dwarf) is Universe Today’s The Sun as a White Dwarf. Other Universe Today articles on dwarf stars (not only white dwarfs!) include Astronomers Discover Youngest and Lowest Mass Dwarfs, Brown Dwarfs Form Like Stars, and Observing an Evaporating Extrasolar Planet.

Astronomy Cast’s episode Dwarf Stars has more on this topic.

How Are Rocks Formed?

A'a lava

As a terrestrial planet, Earth is divided into layers based on their chemical and rheological properties. And whereas its interior region – the inner and outer core – are mostly made up of iron and nickel, the mantle and crust are largely composed of silicate rock. The crust and upper mantle are collectively known as the lithosphere, from which the tectonic plates are composed.

It in the lithosphere that rocks are formed and reformed. And depending on the type of rock, the process through which they are created varies. In all, there are three types of rocks: igneous, sedimentary, and metamorphic. Each type of rock has a different origin. Therefore, the question, “How are rocks formed?” begs three distinct answers.

Continue reading “How Are Rocks Formed?”