Missions that Weren’t: One-Way Mission to the Moon

The Apollo lunar landing module as it looked in 1963. Image credit: wired.com

[/caption]

When President Kennedy promised America a lunar landing in 1961, he effectively set the Moon as the finish line in the space race. In the wake of his speech, NASA began scrambling to find a way to reach the Moon in advance of the Soviet Union, which at the time held a commanding lead in space. Apollo, already on the drawing board as an Earth orbiting program, was revised to reflect the lunar goal and Gemini was established as the interim program.

The pieces were in place; all NASA needed was a way to get to the Moon. Against this pressing background, two men proposed a desperate and direct mission to get an American on the Moon as quickly as possible. 

A schematic showing three different flight modes for Apollo lunar missions. Image credit: NASA

The proposal came from two Bell Aerosystems Company employees. John M. Cord was a Project Engineer in the Advanced Design Division and Leonard M. Seale was a psychologist in charge of the Human Factors Division. At the Institute of Aerospace Sciences in Los Angeles in 1962, the pair unveiled their “One-Way Manned Space Mission” proposal.

The plan called for a one-man spacecraft to follow a direct ascent path to the Moon. Ten feet wide and seven feet tall, the empty spacecraft weighed less than half the much smaller Mercury capsule. Inside, the astronaut would have enough water for 12 days, oxygen for 18 with a 12-day emergency reserve, a battery-powered suit and backpack, and all the tools and medical supplies he might need.

He would land on the Moon after a two-and-a-half day trip and have just under ten days to set up his habitat. As part of his payload, the astronaut would arrive with four cargo modules with pre-installed life support systems and a nuclear reactor to generate electrical power. Two mated modules would become his primary living quarters, while the others placed in caves or buried in rubble — a feature Cord and Seale assumed would dominate the lunar landscape — would provide a shelter from solar storms.

A possible configuration for a direct ascent Apollo spacecraft. Image credit: NASA

With his temporary home set up, he would wait a little over two years for another mission to come and collect him. Cord and Seale estimated that this mission could be launched as early as 1965, a year of expected minimal solar activity. Larger launch vehicles capable of sending the three-man Apollo spacecraft would be ready by 1967. The one-way spaceman would have a long but finite stay on the Moon.

This proposal was incredibly practical. Since the astronaut wouldn’t be launching from the lunar surface, he wouldn’t need to carry the necessary propellant. Since he would return to Earth in another spacecraft, his own spacecraft wouldn’t need a heavy heat shield or parachutes. The one-way mission was a light and efficient proposal.

But it was also dangerous. The proposal didn’t include any redundancies; the direct ascent path gave the astronaut no chance to abort his mission after launch. He would have to deal with any problems that arose knowing he wouldn’t be able to make a quick return home.

Luckily for the possible astronaut the proposal was never seriously considered. In July 1962, a few weeks after the one-way mission was proposed, NASA announced its selection of the more complicated but safer Lunar Orbit Rendezvous (LOR) mode for Apollo missions.

John Houbolt explains the benefits of Lunar Orbit Rendezvous over Direct Ascent. Image credit: NASA/courtesy of nasaimages.org

NASA’s Unprecedented Science Twins are GO to Orbit our Moon on New Year’s Eve

GRAIL probes uses precision formation-flying technique to map Lunar Gravity. The twin GRAIL spacecraft will map the moon's gravity field, as depicted in this artist's rendering. Radio signals traveling between the two spacecraft provide scientists the exact measurements required as well as flow of information not interrupted when the spacecraft are at the lunar farside, not seen from Earth. The result should be the most accurate gravity map of the moon ever made. The mission also will answer longstanding questions about Earth's moon, including the size of a possible inner core, and it should provide scientists with a better understanding of how Earth and other rocky planets in the solar system formed. GRAIL is a part of NASA's Discovery Program. Credit: NASA/JPL-Caltech

[/caption]

In less than three days, NASA will deliver a double barreled New Year’s package to our Moon when an unprecedented pair of science satellites fire up their critical braking thrusters for insertion into lunar orbit on New Year’s Eve and New Year’s Day.

NASA’s dynamic duo of GRAIL probes are “GO” for Lunar Orbit Insertion said the mission team at a briefing for reporters today, Dec. 28. GRAIL’s goal is to exquisitely map the moons interior from the gritty outer crust to the depths of the mysterious core with unparalled precision.

“GRAIL is a Journey to the Center of the Moon”, said Maria Zuber, GRAIL principal investigator from the Massachusetts Institute of Technology (MIT) in Cambridge at the press briefing.

This newfound knowledge will fundamentally alter our understanding of how the moon and other rocky bodies in our solar system – including Earth – formed and evolved over 4.5 Billion years time.

After a three month voyage of more than 2.5 million miles (4 million kilometers) since launching from Florida on Sept. 10, 2011, NASA’s twin GRAIL spacecraft, dubbed Grail-A and GRAIL-B, are now on final approach and are rapidly closing in on the Moon following a trajectory that will hurl them low over the south pole and into an initially near polar elliptical lunar orbit lasting 11.5 hours.

GRAIL's trajectory to moon since Sept. 10, 2011 blastoff
Credit: NASA/JPL-Caltech

As of today, Dec. 28, GRAIL-A is 65,860 miles (106,000 kilometers) from the moon and closing at a speed of 745 mph (1,200 kph). GRAIL-B is 79,540 miles (128,000 kilometers) from the moon and closing at a speed of 763 mph (1,228 kph).

The lunar bound probes are formally named Gravity Recovery And Interior Laboratory (GRAIL) and each one is the size of a washing machine.

The long-duration trajectory was actually beneficial to the mission controllers and the science team because it permitted more time to assess the spacecraft’s health and check out the probes single science instrument – the Ultra Stable Oscillator – and allow it to equilibrate to a stable operating temperature long before it starts making the crucial science measurements.

NASA’s twin GRAIL A & B Moon mapping probes
The GRAIL satellites are now streaking to the Moon and their arrival for orbit insertion is just days away and hours apart on New Year’s Eve and New Year’s Day 2012. This picture shows how they looked, mounted side by side, during launch preparations inside the clean room at Astrotech Space Operations facility in Florida prior to blasting off for the Moon on Sept. 10, 2011 from Cape Canaveral, Florida. Credit: Ken Kremer

The duo will arrive 25 hours apart and be placed into orbit starting at 1:21 p.m. PST (4:21 p.m. EST) for GRAIL-A on Dec. 31, and 2:05 p.m. PST (5:05 p.m. EST) on Jan. 1 for GRAIL-B, said David Lehman, project manager for GRAIL at NASA’s Jet Propulsion Laboratory (JPL) in Pasadena, Calif.

“The GRAIL A burn will last 40 minutes and the GRAIL-B burn will last 38 minutes. One hour after the burn we will know the results and make an announcement,” Lehman explained.

The thrusters must fire on time and for the full duration for the probes to achieve orbit. The braking maneuver is preprogrammed and done completely automatically.

Over the next few weeks, the altitude of the spacecraft will be gradually lowered to 34 miles (55 kilometers) into a near-polar, near-circular orbit with an orbital period of two hours. The science phase will then begin in March 2012.

“So far there have been over 100 missions to the Moon and hundreds of pounds of rock have been returned. But there is still a lot we don’t know about the Moon even after the Apollo lunar landings,” explained Zuber.

“We don’t know why the near side of the Moon is different from the far side. In fact we know more about Mars than the Moon.”

GRAIL’s science collection phase will last 82 days. The two spacecraft will transmit radio signals that will precisely measure the distance between them to within a few microns, less than the width of a human hair.

Artist concept of twin GRAIL spacecraft flying in tandem orbits around the moon to measure its gravity field in unprecedented detail. Credit: NASA/JPL

As they orbit in tandem, the moons gravity will change – increasing and decreasing due to the influence of both visible surface features such as mountains and craters and unknown concentrations of masses hidden beneath the lunar surface. This will cause the relative velocity and the distance between the probes to change.

The resulting data will be translated into a high-resolution map of the Moon’s gravitational field and also enable determinations of the moon’s inner composition.

The GRAIL mission may be extended for another 6 months if the solar powered probes survive a power draining and potentially deadly lunar eclipse due in June 2012.

Engineers would significantly lower the orbit to an altitude of barely 15 to 20 miles above the surface to gain even further insights into the lunar interior.

The twin probes are also equipped with 4 cameras each – named MoonKAM – that will be used by middle school students to photograph student selected targets.

The MoonKAM project is led Dr. Sally Ride, America’s first woman astronaut as a way to motivate kids to study math and science.

JPL manages the GRAIL mission for NASA.

Stay tuned for Universe Today updates amidst the News Year’s festivities.

Blastoff of twin GRAIL A and B lunar gravity mapping spacecraft on a Delta II Heavy rocket on Sept. 10 from Pad 17B Cape Canaveral Air Force Station in Florida at 9:08 a.m. EDT. Credit: Ken Kremer

Read continuing features about GRAIL by Ken Kremer here:
Student Alert: GRAIL Naming Contest – Essay Deadline November 11
GRAIL Lunar Blastoff Gallery
GRAIL Twins Awesome Launch Videos – A Journey to the Center of the Moon
NASA launches Twin Lunar Probes to Unravel Moons Core
GRAIL Unveiled for Lunar Science Trek — Launch Reset to Sept. 10
Last Delta II Rocket to Launch Extraordinary Journey to the Center of the Moon on Sept. 8
NASAs Lunar Mapping Duo Encapsulated and Ready for Sept. 8 Liftoff
GRAIL Lunar Twins Mated to Delta Rocket at Launch Pad
GRAIL Twins ready for NASA Science Expedition to the Moon: Photo Gallery

Missions that Weren’t: NASA’s Manned Mission to Venus

Venus. Image Credit: NASA/courtesy of nasaimages.org

[/caption]

In the mid-1960s, before any Apollo hardware had flown with a crew, NASA was looking ahead and planning its next major programs. It was a bit of a challenge. After all, how do you top landing a man on the Moon? Not wanting to start from scratch, NASA focused on possible missions that would use the hardware and software developed for the Apollo program. One mission that fit within these parameters was a manned flyby of our cosmic twin, Venus. 

As one of our neighbouring planets, a mission to Venus made sense; along with Mars, it’s the easiest planet to reach. Venus was also a mystery at the time. In 1962, the Mariner 2 spacecraft became the first interplanetary probe. It flew by Venus, gathered data on its temperature and atmospheric composition before flying off into a large heliocentric orbit. But there was more to learn, making it a destination worth visiting.

A scale comparison of terrestrial planets Mercury, Venus, Earth, and Mars. That Earth and Venus are of a similar size led many to draw comparisons between the planets before better scientific experiments revealed Venus is closer to the Earth inside out. Image Credit: NASA/courtesy of nasaimages.org

But beyond being relatively practical with great potential for scientific return, a manned mission to Venus would prove that NASA’s spacecraft and astronauts were up for the challenges of long-duration interplanetary flight. In short, it would give NASA something exciting to do.

The mission proposal was published early in 1967. It enhanced the Apollo spacecraft with additional modules, then took the basic outline of an Apollo mission and aimed it towards Venus instead of the Moon.

The crew would launch on a Saturn V rocket in November of 1973, a year of minimal solar activity. They would reach orbit in the same Command and Service Modules (CSM) that took Apollo to the Moon. Like on Apollo, the CSM would provide the main navigation and control for the mission.

Going to the Moon, Apollo missions had the crew turn around in the CSM to pull the LM out of its launch casing. On the mission to Venus, the crew would do the same, only instead of an LM they would dock and extract the Environmental Service Module (ESM). This larger module would supply long-duration life support and environmental control and serve as the main experiment bay.

An artist's impression of the Mariner 2 probe. Image Credit: NASA/courtesy of nasaimages.org

With these two pieces mated, the upper S-IVB stage of Saturn V would propel the spacecraft towards Venus. Once its fuel store was spent, the crew would repurpose the S-IVB into an additional habitable module. Using supplies stored in the ESM, they would turn the rocket stage into their primary living and recreational space. On its outside, an array of solar panels would power each piece of the spacecraft throughout the mission.

The crew would spend 123 days traveling to Venus. Ten hours of each day would be dedicated to science, mainly observations of the solar system and beyond with a telescope mounted in the ESM. UV, X-ray, and infrared measurements could create a more complete picture of our corner of the universe. The rest of each day would be spent sleeping, eating, exercising, and relaxing — a full two hours of every day would be dedicated to unstructured leisure, a first for astronauts.

Like Mariner 2 before them, the crew would flyby Venus rather than go into orbit. They would only have 45 minutes to do close optical observations and deploy probes that would send back data on the Venusian atmosphere in realtime.

After the flyby, the spacecraft would swing around Venus and start its 273 day trip back to Earth. Like on an Apollo lunar mission, the crew would transfer back into the Command Module before reentry taking anything that had to return to Earth with them. They would jettison the S-IVB, the ESM, and the Service Module, switch the CM to battery power, and plunge through the atmosphere. Around December 1, 1974, they would splashdown somewhere in the Pacific Ocean.

Though worked out in great detail, the proposal was a thought experiment rather than something NASA was seriously considering. Nevertheless, Apollo-era technology would have managed the mission.

Source: NASA Manned Venus Flyby Study

The surface of Venus as captured by Soviet Venera 13 lander in March of 1982. NASA/courtesy of nasaimages.org

The Thirty-Ninth Anniversary of the Last Moonwalk

Image Credit: NASA/Eugene Cernan

[/caption]

On December 13, 1972, Apollo 17 Commander Eugene A. Cernan and Lunar Module Pilot (LMP) Harrison H. “Jack” Schmitt made the final lunar EVA or moonwalk of the final Apollo mission. Theirs was the longest stay on the Moon at just over three days and included over twenty-two hours spent exploring the lunar surface during which they collected over 250 pounds of lunar samples.

To commemorate the thirty-ninth anniversary of this last EVA, NASA posted a picture of Schmitt on the lunar surface as its ‘Image of the Day.’ 

Apollo 17, the only lunar mission to launch at night. Image Credit: NASA/courtesy of nasaimages.org

Apollo 17 launched on a Saturn V rocket on December 7, 1972. Four days later on December 11, Cernan and Schmitt moved into the Lunar Module Challenger and descended to a touchdown in the Taurus-Littrow valley. Command Module Pilot Ron Evans, meanwhile, stayed in orbit aboard the Command Module America.

The Taurus-Littrow valley was chosen as the best landing spot to take advantage of Apollo 17’s capabilities. It was a “J mission,” one designed for extended EVAs that would take the astronauts further from the LM than any previous missions using the Lunar Rover. It was also a geologically interesting area. Here, the astronauts would be able to reach and collect samples from the old lunar highlands as well as relatively young volcanic regions. For this latter goal, Apollo 17’s greatest tool was its LMP, Schmitt.

When NASA began looking for its first group of astronauts in 1959, candidates had to be affiliated with the military, trained engineers, and have logged at least 1,500 hours of flying time in jets. The same basic criteria were applied to the second and third group of astronauts selected in 1962 and 1963 respectively.

Cernan's Apollo 17 lunar suit is currently on display at the Smithsonian National Air and Space Museum, just one of the 137 million Apollo-era artifacts in the museum's collection. Image Credit: National Air and Space Museum

The fourth group brought a change. In June 1965, six trained scientists joined NASA’s astronaut corps. For this group, PhDs were a necessity and the previous flight hours requirement was dropped. Three of the men selected were physicists, two were physicians, and one, Schmitt, was a trained geologist.

Schmitt had explored the geological possibilities of a a lunar mission as a civilian. Before he joined NASA, he worked with the U.S. Geological Survey’s Astrogeology Center in Flagstaff, Arizona. There he devised training programs designed to teach astronauts enough about geology as well as photographic and telescopic mapping to make their journeys to the Moon as fruitful as possible. He was among the astrogeologists that instructed NASA’s astronauts during their geological field trips.

After joining the astronaut corps, Schmitt spent 53 weeks catching up to his colleagues in flight proficiency. He also spent hundreds of hours learning to fly both the Lunar Module and the Command Module. All the while, he remained an integral part of the astronauts’ lunar geology training, often assisting crews in finding and collecting the right kinds of rocks from a control station in Houston during a lunar mission.

Schmitt’s lunar companion, Gene Cernan, was an Apollo veteran. As the LMP on Apollo 10, he had flown within eight miles of the lunar surface but didn’t have enough fuel — or NASA’s blessing — to actually land. As commander of Apollo 17, he spent more time on the Moon than any other man. As commander, he entered the LM after Schmitt at the end of their final moonwalk. His bootprints remain the most recent human-made mark on the lunar surface.

Cernan and Schmitt abord the LM Challenger during their Apollo 17 mission. Image Credit: NASA/courtesy of nasaimages.org

Empowering Curiosity, Numerous Systems Required to Land Martian Rover

If all goes according to how it is planned, Curiosity will touch down safely on the surface of Mars in August of 2012. Photo Credit: Alan walters/awaltersphoto.com


Launch video provided courtesy of United Launch Alliance

CAPE CANAVERAL, Fla – It is a mission years in the making. However, it would not be possible without the hard work of an army’s worth of engineers – and the systems that they built. How many different systems and engines are required to get the Mars Science Laboratory (MSL) rover named Curiosity to the surface of the Red Planet? The answer might surprise you.

Including the two engines that are part of the Atlas V 541 launch vehicle, it will take 50 different engines and thrusters in total to work perfectly to successfully deliver Curiosity to the dusty plains of Mars.

Starting with the launch vehicle itself, there are six separate engines that power the six-wheeled rover, safely ensconced in its fairing, out of Earth’s gravity well. For the first leg of the journey four powerful Solid Rocket Boosters (SRBs) provided by Aerojet (each of these provides 400,000 lbs of thrust) will launch the rover out of Earth’s atmosphere.

The United Launch Alliance (ULA) Atlas launch vehicle has two rocket engines that provide the remaining amount of thrust required to get MSL to orbit and send the rover on its way to Mars. The first is the Russian-built RD-180 engine (whose thrust is split between two engine bells) the second is the Centaur second stage. There are four Aerojet solid rocket motors that help the booster and Centaur upper stage to separate.

The Centaur’s trajectory is controlled by both thrust vector control of the main engine as well as a Reaction Control System or RCS comprised of liquid hydrazine propulsion systems (there are twelve roll control thrusters on the Centaur upper stage).

MSL’s cruise stage separates entirely from the Centaur upper stage and is on the long road to the Red Planet. The cruise stage has eight one-pound-thrust hydrazine thrusters that are used for trajectory maneuvers for the nine-month journey to Mars. These are used for minor corrections to keep the spacecraft on the correct course.

Curiosity’s first physical encounter with the Martian environment is referred to as Entry, Descent and Landing (EDL) – more commonly known as “six minutes of terror” – the point when mission control, back on Earth, loses contact with the spacecraft as it enters the Martian atmosphere.


Video courtesy of Lockheed Martin

Even though Mars only has roughly one percent of Earth’s atmosphere, the friction of the atmosphere caused by a spacecraft impacting it at 13,200 miles per hour (about 5,900 meters per second) – is enough to melt Curiosity if it were exposed to these extremes. The heat shield, located at the base of the cruise stage, prevents this from happening.

The heat shield, provided by Lockheed-Martin, on MSL’s cruise stage is 14.8 feet (4.5 meters) in diameter. By comparison, the heat shields that were used on the Apollo manned missions to the Moon were 13 feet (4 meters) in diameter and the ones that allowed the Mars Exploration Rovers Spirit and Opportunity to safely reach the surface of Mars were 8.7 feet (2.65 meters) in diameter.

[/caption]

At this point in the mission eight engines, each providing 68 pounds of thrust come into play. These engines provide all of the trajectory control during EDL – meaning they will fire almost continuously.

Shortly thereafter – BOOM – the parachute deploy. Then the heat shield is ejected. After the parachute slow the spacecraft down to a sufficient degree, both they and the back aeroshell depart leaving just the rover and its jet pack.

Curiosity will employ a very unique method to touch down on Mars. What is essentially a jet-pack, called the SkyCrane will be used to allow the rover to hover in mid-air as it is lowered via cables to the ground. Photo Credit: Alan Walters/awaltersphoto.com

During the landing phase the “SkyCrane” comes alive with eight powerful hydrazine engines, each of which give Curiosity 800 pounds of thrust. Aerojet’s Redmond Site Executive, Roger Myers, talked a bit about this segment of the landing, considered by many to be the most dramatic method of getting a vehicle to the surface of Mars.

“Because of the control requirements for the SkyCrane these engines had to be very throttleable,” Myers said. “Keeping the SkyCrane level is a must, you must have very fine control of those engines to ensure stability.”

Although the SkyCrane is often highlighted as an aspect that will add complexity to MSL's mission - there are numerous systems that can cause an early end to the mission. Image Credit: NASA/JPL

If all has gone well up to this point, the Curiosity rover will be lowered the remaining distance to the ground via cables. Once contact with the Martian surface is detected, the cables are cut, the SkyCrane’s engines throttle up and the jet pack flies off to conduct a controlled crash (approximately a mile or so away from where Curiosity is located).

Every powered landing on Mars conducted in the U.S. unmanned space program has utilized Aerojet’s thrusters. The reliability of these small engines was recently proven – in a mission that is now almost three-and-a-half decades old.

Tucked in between the aeroshell and the heat shield, Curiosity is prepared to take the long trip to the Red Planet. Photo Credit: NASA/JPL

Voyager recently conducted a course correction some 34 years after it was launched – highlighting the capability of these thrusters to perform well after launch.

“Our engines have allowed missions to fly to every planet in the solar system and we are currently on our way to Mercury and Pluto,” Myers said. “When NASA explores the solar system – Aerojet provides the propulsion components.”

Hundreds of different components, provided by numerous contractors and sub-contractors all must work perfectly to ensure that the Mars Science Laboratory makes it safely to Mars. Photo Credit: Alan Walters/awaltersphoto.com

Massive Motion – NASA’s Mobile Launcher Moves to Launch Pad

NASA's Mobile Launcher (ML) begins its long (and slow) trek to Launch Complex-39B at Kennedy Space Center in Florida. Photo Credit: Alan Walters/awaltersphoto.com

Video of Mobile Launcher on its move out to Launch Complex 39B courtesy of Alan Walters/awaltersphoto.com

CAPE CANAVERAL, Fla – NASA decided that its Mobile Launcher (ML) needed a bit of a shakedown cruise – so it took it on a trip to Launch Complex – 39B (LC-39B). Along the way it stopped and reviewed data as to how the massive tower fared as it lumbered along at the blistering pace of a mile-an-hour. This does not make for riveting must-see video – unless you speed it up.

In the roughly minute-long video the ML moves along at a (somewhat) faster pace. The ML is part of the space agency’s plans to return NASA to the business of space exploration once again. If all goes according to plan, the ML will be the platform used to launch NASA’s Space Launch System or SLS.

[/caption]

As with so many aspects of space exploration, there is a type of art that flows from even the least aesthetic blocky components that are used to lift Heaven and Earth. For those with the right eye, even a metallic tower has a beauty all its own.

That is exactly what aerospace photographer Alan Walters does – find the path to let an object’s inner beauty shine through. The burly photographer has an artist’s eye and loves sharing the awe of all manners of space flight and spacecraft processing.

On Wednesday one of the most emotional aspects of the journey to the launch pad – was the resemblance of some of the images – to those shot during the Apollo era. This imagery could well be prescient as NASA is passing the responsibility of delivering crew and cargo to the International Space Station to commercial space firms as it turns its focus on launching crews to points beyond low-Earth-orbit.

In an image that is eerily similar to shots taken during the moonshots of the late 1960s and early 1970s NASA's Mobile Launcher moves out to Launch Complex-39B on Nov. 16, 2011. Photo Credit: Alan walters/awaltersphoto.com

The ML moved from next to Kennedy Space Center’s (KSC) Vehicle Assembly Building (VAB) to LC-39B to collect data from structural and functional engineering tests. Any relevant data that is gleaned from the journey will be used to modify the ML. The 355-foot-tall ML is being developed to support NASA’s exploration objectives.

“To be honest, I wasn’t expecting much from the move,” Walters said. “After the thing got moving, I began having Apollo flashbacks and I got more and more into photographing and getting video of this event. It made me hopeful about what we might be seeing fly out of Kennedy (Space Center) in the years to come.”

Spiraling upward into the sky, the Mobile Launcher rises some 355 feet into the air and could one day be the platform from which astronauts launch to visit other worlds. Photo Credit: Alan Walters/awaltersphoto.com

Orion Spacecraft to Launch in 2014

NASA has announced that it will conduct an unmanned test flight called the Exploration Flight Test-1 or EFT-1 in 2014. Image Credit: NASA.gov

[/caption]
CAPE CANAVERAL, Fla – NASA has announced its intention to launch an unmanned flight of the Orion Spacecraft atop a United Launch Alliance (ULA) Delta IV Heavy launch vehicle – by 2014. This flight test will be added to the contract that the space agency has with aerospace firm Lockheed Martin. The Orion Multi-Purpose Crew Vehicle or Orion MPCV as it is more commonly known – will test out systems that will be employed on the Space Launch System (SLS). If successful, this will allow astronauts to travel beyond low-Earth-orbit (LEO) for the first time in over four decades.

“This flight test will provide invaluable data to support the deep space exploration missions this nation is embarking upon,” said NASA Associate Administrator for Communications David Weaver.

The flight has been dubbed Exploration Flight Test or EFT-1 and will be comprised of two high-apogee orbits that will conclude with a high-energy reentry into the Earth’s atmosphere. Like the Mercury, Gemini and Apollo capsules before it, the Orion MPCV will conduct a water landing.

The test mission will lift off from Cape Canaveral Air Force Station located in Florida. It is designed to provide the space agency with vital flight data regarding how the vehicle handles re-entry and other performance issues.

The test flight will be comprised of two high-apogee orbits followed by a splash down. This flight will provide NASA with crucial information that could potentially lead to changes in the Orion spacecraft's design. Image Credit: NASA

“The entry part of the test will produce data needed to develop a spacecraft capable of surviving speeds greater than 20,000 mph and safely return astronauts from beyond Earth orbit,” said Associate Administrator for Human Exploration and Operations William
Gerstenmaier. “This test is very important to the detailed design process in terms of the data we expect to receive.”

Presumably the use of a Delta IV Heavy would allow NASA to accelerate its human exploration objectives at an accelerated rate. Since the flight will be unmanned, there is no need to man-rate the launch vehicle and given the current economic issues facing the United States, the use of so-called “legacy” hardware could ensure that costs are kept down.

The past year has seen the development of the Orion spacecraft proceed at an accelerated pace. Photo Credit: NASA/Lockheed Martin

NASA has also stated its intention to release competitive solicitations for design proposals for new, advanced liquid or solid boosters to be used on the SLS. Another contract that will be opened for competition will be for payload adaptors for both crewed as well as cargo missions.

The Orion spacecraft was originally part of the Constellation Program. Its design has since been modified – but its mission to one day fly astronauts to the Moon, Mars and beyond – remains. The EFT-1 test flight will allow technicians and NASA officials to better determine what further changes need to be made to best aid the completion of NASA’s exploration goals.

The EFT-1 test flight could pave the way for flights back to the Moon, to the planet Mars and to other destinations throughout the solar system. Image Credit: NASA.gov

ASF 2011 Autograph Show: To Be the Shoulders of Tomorrow’s Titans

KENNEDY SPACE CENTER, Fla – Every year the Astronaut Scholarship Foundation (ASF) hosts its “Astronaut Autograph Show” at Kennedy Space Center in Florida. This year it was held on Nov. 5-6 at the Kennedy Space Center Visitor Complex’s Debus Center. The ASF coordinated with the operators of the Cocoa Beach Air Show to ensure that the show had a very dramatic ending. Continue reading “ASF 2011 Autograph Show: To Be the Shoulders of Tomorrow’s Titans”

How the Moon Became Magnetized

astronauts faced possible radiation dangers on the Moon.
Apollo 17 astronaut Harrison "Jack" Schmitt at Tracy Rock on the lunar surface. If a solar storm had hit the Moon while the astronauts were on the surface exploring, it could have been a disaster. Credit: NASA.

[/caption]

It’s been a mystery ever since the Apollo astronauts brought back samples of lunar rocks in the early 1970s. Some of the rocks had magnetic properties, especially one collected by geologist Harrison “Jack” Schmitt. But how could this happen? The Moon has no magnetosphere, and most previously accepted theories state that it never did. Yet here we have these moon rocks with undeniable magnetic properties… there was definitely something missing in our understanding of Earth’s satellite.

Now a team of researchers at the University of California, Santa Cruz thinks they may have cracked this enigmatic magnetic mystery.

In order for a world to have a magnetic field, it needs to have a molten core. Earth has a multi-layered molten core, in which heat from the interior layer drives motion within the iron-rich outer layer, creating a magnetic field that extends far out into space. Without a magnetosphere Earth would have been left exposed to the solar wind and life as we know it could may never have developed.

Apollo 17 lunar rock sample

Simply put, Earth’s magnetic field is crucial to life… and it can imbue rocks with magnetic properties that are sensitive to the planet-wide field.

But the Moon is much smaller than Earth, and has no molten core, at least not anymore… or so it was once believed. Research of data from the seismic instruments left on the lunar surface during Apollo EVAs recently revealed that the Moon may in fact still have a partially-liquid core, and based on a paper published in the November 10 issue of Nature by Christina Dwyer, a graduate student in Earth and planetary sciences at the University of California, Santa Cruz, and her co-authors Francis Nimmo at UCSC and David Stevenson at the California Institute of Technology, this small liquid core may once have been able to produce a lunar magnetic field after all.

The Moon orbits on its axis at such a rate that the same side always faces Earth, but it also has a slight wobble in the alignment of its axis (as does Earth.) This wobble is called precession. Precession was stronger due to tidal forces when the Moon was closer to Earth early in its history. Dwyer et al. suggest that the Moon’s precession could have literally “stirred” its liquid core, since the surrounding solid mantle would have moved at a different rate.

This stirring effect – arising from the mechanical motions of the Moon’s rotation and precession, not internal convection – could have created a dynamo effect, resulting in a magnetic field.

This field may have persisted for some time but it couldn’t last forever, the team said. As the Moon gradually moved further away from Earth the precession rate slowed, bringing the stirring process – and the dynamo – to a halt.

“The further out the moon moves, the slower the stirring, and at a certain point the lunar dynamo shuts off,” said Christina Dwyer.

Still, the team’s model provides a basis for how such a dynamo could have existed, possibly for as long as a billion years. This would have been long enough to form rocks that would still exhibit some magnetic properties to this day.

The team admits that more paleomagnetic research is needed to know for sure if their proposed core/mantle interaction would have created the right kind of movements within the liquid core to create a lunar dynamo.

“Only certain types of fluid motions give rise to magnetic dynamos,” Dwyer said. “We calculated the power that’s available to drive the dynamo and the magnetic field strengths that could be generated. But we really need the dynamo experts to take this model to the next level of detail and see if it works.”

In other words, they’re still working towards a theory of lunar magnetism that really sticks.

 

Read the article by Tim Stephens on the UCSC website.

 

Carl Sagan: The Gift of Apollo

We all could use a little Carl Sagan in our day, and this latest installment in a new video series put together by Reid Gower might be just what you need for a little inspiration! Gower puts the words of Sagan to video and music, creating a stunning tribute to both Sagan himself and the Apollo program. Gower says he is “using social media to promote scientific literacy,” and this video is part 8 of “The Sagan Series” and he’s also created a companion set of videos, “The Feynman Series,” using the words of physicist Richard Feynman.

This video is based on a chapter of Sagan’s monumental book Pale Blue Dot: A Vision of the Human Future in Space, a book that has inspired and motivated many people, including me. In this video, Sagan discusses the triumph of landing on the Moon, as well as pointing out the true political motivations for the Apollo missions, and their often overlooked benefits.