Ground-Based Lasers Could Push Space Debris off Collision-Course Orbits

Researchers at the Australian National University (ANU) are finding new uses for the laser-based technology that sharpens telescope imagery – called adaptive optics – and it just might help mitigate the world’s growing space debris problem. Purpose-built lasers could give derelict satellites a slight ‘push’ of photons, imparting just enough energy to change the debris’s orbit and prevent an impending collision.

Continue reading “Ground-Based Lasers Could Push Space Debris off Collision-Course Orbits”

OSIRIS-REx Did One Last Close Flyby of Asteroid Bennu. It’s Almost Time to Come Home

After more than two years in orbit around asteroid Bennu, NASA’s OSIRIS-REx spacecraft is ready to come home. It’s bringing with it a pristine sample of space rocks that geologists here on Earth are eager to study up close. The sample will arrive in September 2023, but we won’t have to wait nearly that long for new data from OSIRIS-REx. Last week, the probe carried out one final flyby of Bennu, in an effort to photograph the sample collection site. The photographs are being downlinked now, and should be here by midweek.

If you’ve been following the OSIRIS-REx mission, you probably already know why scientists are keen to see these photographs, but if you haven’t, hold on to your hats – it’s a wild story.

Continue reading “OSIRIS-REx Did One Last Close Flyby of Asteroid Bennu. It’s Almost Time to Come Home”

Jupiter Could Make an Ideal Dark Matter Detector

So, you want to find dark matter, but you don’t know where to look? A giant planet might be exactly the kind of particle detector you need! Luckily, our solar system just happens to have a couple of them available, and the biggest and closest is Jupiter. Researchers Rebecca Leane (Stanford) and Tim Linden (Stockholm) released a paper this week describing how the gas giant just might hold the key to finding the elusive dark matter.

Continue reading “Jupiter Could Make an Ideal Dark Matter Detector”

InSight Detects Two Significant Quakes from the Cerberus Fossae Region on Mars

NASA’s InSight lander felt the distant rumble of two major ‘marsquakes’ in March, originating from a region near the Martian equator known as the Cerberus Fossae. Registering magnitudes of 3.1 and 3.3 on March 7th and March 18th respectively, the quakes cement the Cerberus Fossae’s reputation as one of the most geologically active places on the Red Planet today. A pair of similarly strong marsquakes rocked the same region back in 2019.

Continue reading “InSight Detects Two Significant Quakes from the Cerberus Fossae Region on Mars”

Newly Forming Stars Don’t Blast Away Material as Previously Believed. So Why Do They Stop Growing?

We thought we understood how stars are formed. It turns out, we don’t. Not completely, anyway. A new study, recently conducted using data from the Hubble Space Telescope, is sending astronomers back to the drawing board to rewrite the accepted model of stellar formation.

Continue reading “Newly Forming Stars Don’t Blast Away Material as Previously Believed. So Why Do They Stop Growing?”

A Very Powerful Solar Storm Hit the Earth Back in 1582

“A great fire appeared in the sky to the North, and lasted three nights,” wrote a Portuguese scribe in early March, 1582. Across the globe in feudal Japan, observers in Kyoto noted the same fiery red display in their skies too. Similar accounts of strange nighttime lights were recorded in Leipzig, Germany; Yecheon, South Korea; and a dozen other cities across Europe and East Asia.

It was a stunning event. While people living at high latitudes were well aware of auroras in 1582, most people living closer to the equator were not. The solar storm that year was unlike anything in living memory, and it was so strong it brought the aurora to latitudes as low as 28 degrees (in line with Florida, Egypt, and southern Japan). People this close to the equator had no frame of reference for such dazzling nighttime displays, and many took it as a religious portent.

Continue reading “A Very Powerful Solar Storm Hit the Earth Back in 1582”

Lightning Strikes Helped Life get an Early Start on Earth

So, you want to create life? You’re going to need some ingredients first. On Earth four billion years ago, you might find some of those ingredients in the impact craters of asteroid strikes (as long as you don’t get blown up in the blast yourself). A safer place to look, according to new research from the University of Leeds, might be in the sites of lightning strikes. Lightning is less destructive, more common, and creates equally useful minerals out of which you can build your early, single cellular life forms.

Continue reading “Lightning Strikes Helped Life get an Early Start on Earth”

It Turns Out That the World’s Oldest Impact Crater Isn’t an Impact Crater

In early 2012, an international research team surveying parts of southwestern Greenland announced that they had discovered the oldest impact crater ever discovered on Earth, estimated at 3.3 billion years old. Now, new research shows that the strange geological feature – known as the Maniitsoq structure – is probably the result of Earthly geological processes, rather than a meteorite impact.

Continue reading “It Turns Out That the World’s Oldest Impact Crater Isn’t an Impact Crater”

How do you get Power into Your Lunar Base? With a Tower of Concrete Several Kilometers High

It sounds like science fiction, but building an enormous tower several kilometers high on the Lunar surface may be the best way to harness solar energy for long-term Lunar exploration. Such towers would raise solar panels above obstructing geological features on the Lunar surface, and expand the surface area available for power generation.

Continue reading “How do you get Power into Your Lunar Base? With a Tower of Concrete Several Kilometers High”