Ultimate Recycling on the ISS: Urine to Water

Right now, the crews on board the International Space Station consist of three people. But by late next year, the crew size will grow to six. That means more food, more water and ultimately more waste. But NASA has been working on a recycling system to transform urine and other liquid wastes into water that can be used in space for drinking, food preparation and washing. Agency officials say the water from the system will be cleaner than U.S. tap water. Not only does this help manage wastes on board the station, but its also a cost-saving measure. Water is heavy and launching it on board the shuttle or Progress re-supply ship is expensive.


The Water Recovery System recycles liquid wastes — which can consist of urine, sweat, or leftover water used for bathing or food preparation — by filtering it through a series of chemical processes and filters, making it safe to drink. Urine, for example, first passes through a distillation process to separate the liquid phase from the gaseous phase, after which it is mixed with other water waste and is treated with the help of a water processor.

After removing the remnant gaseous and solid phases, the liquid is filtered for additional purification and undergoes a high-temperature catalytic reaction, in order to destroy unwanted organic contaminants.

The system is scheduled to be brought to the ISS on the STS-126 mission, planned to launch this fall.

“Recycling will be an essential part of daily life for future astronauts, whether on board the space station or living on the Moon. Delivering this hardware is an important step in achieving the station’s full potential, allowing for additional crew members and more scientific research”, said NASA’s station program manager, Mike Suffredini.

Recycling will reduce the amount of consumables needed on board the space station by as much as 6,800 kilograms per year.

Original News Sources: Softpedia, USA Today

7 Minutes of Terror for Phoenix Spacecraft (Video)

Are you ready for the Phoenix spacecraft to land on Mars? At the Jet Propulsion Laboratory, the Entry, Descent and Landing team for Phoenix has been hard at work getting ready, performing simulations to prepare for the real landing, scheduled for May 25, 2008 in a region above Mars’ Arctic Circle. Emily Lakdawalla at the Planetary Society has an excellent post about Phoenix’s landing elipse, with some great information from JPL’s Rob Manning about all the variables the EDL team has to take into account for the landing, such as the spacecraft itself, its entry point, and the properties of the atmosphere. But if you’re a more visual-type person, JPL has also put together a couple of videos about the 7 minutes of terror the spacecraft (and the EDL team!) endures from when the vehicle hits the top of the atmosphere, through parachute deploy, to touching down on Mars surface. The amount of anxiety is an upgrade from the six minutes of terror the Mars Exploration Rovers experienced, and it really is a scary time!

This video includes commentary from the engineers at JPL, describing all the events that take place during EDL:

And this video is visual only, no audio of EDL:

Unusual Crater in Mars’ Mamers Valles (Gallery)

The Mars Express Spacecraft captured several images of an unusual crater in the Mamers Valles area on Mars with its High-Resolution Stereo Camera (HRSC). The crater is at the end of the long, winding valley, and contains a remarkable dark area. Scientists are not certain whether the dark colored material could have formed in-situ or if it may have been transported by the wind. Some of the structures shown here are thought to be ice-rich debris flows, and they show some resemblance to block glaciers seen on Earth.


Scientists call a region like Mamers Valles ‘fretted terrain’ because it shows numerous deep and wide labyrinth-like valleys and circular depressions which often show structures formed by flowing liquid on their even floors.

The patches of rock at the center of the depression are thought to be remnants of rock that were detached from the sides of the depression and transported to the center.

This false color image shows the differences in elevation. The image was made using elevation data obtained from an HRSC-derived high-resolution Digital Terrain Model (DTM), which is used to create elevation maps on Mars. Elevation data from the DTM has been color-coded and combined with the HRSC image so that elevation data and the image itself are displayed in a single scene.

The depression is approximately 30 km wide and 1400 m deep. It lies at the south-eastern end of Mamers Valles. The data was obtained on August 5, 2006 with a ground resolution of approximately 14 m/pixel.

The images are centered at approximately 39° north and 17° east on the planet. The valley of Mamers Valles is approximately 1000 km long, running along the boundary between the northern lowlands and southern highlands in the region of Deuteronilus Mensae.

Original News Source: ESA

Mapquesting the Solar System

Pictures of all the objects in the Solar System. Image credit: NASA/JPL

Map generators like Mapquest and Yahoo! Maps have bailed me out quite a few times, helping me get where I needed to go. So imagine in the future, navigating on other bodies in our solar system and having the ability to find landmarks and destinations to point you in the right direction. This type of technology is now under development and could create three-dimensional “super roadmaps” of other planets and moons. In addition it could also provide robots, astronauts and engineers details about atmospheric composition, biohazards, wind speed and temperature, and could help land future spacecraft and more effectively navigate roving cameras across a Martian or lunar terrain.

The Rochester Institute of Technology’s Rochester Imaging Detector Laboratory (RIDL), in collaboration with Massachusetts Institute of Technology’s Lincoln Laboratory are developing a new type of detector that uses LIDAR (LIght Detection and Ranging), a technique similar to radar, but which uses light instead of radio waves to measure distances.

This is a new generation of high resolution, low power consuming optical/ultraviolet imaging LIDAR detectors that will significantly extend NASA’s science capabilities for planetary applications by providing 3-D location information for planetary surfaces and a wider range of coverage than the single-pixel detectors currently combined with LIDAR.

The LIDAR imaging detector will be able to distinguish topographical details that differ in height by as little as one centimeter.

“The imaging LIDAR detector could become a workhorse for a wide range of NASA missions,” says Donald Figer, director of the RIDL. “You can have your pixel correspond to a few feet by a few feet spatial resolution instead of kilometer by kilometer,” Figer says. “And now you can take LIDAR pictures at fine resolutions and build up a map in hours instead of taking years at comparable resolution with a single image.”

The device will consist of a 2-D continuous array of light sensing elements connected to high-speed circuits. The $547,000 NASA-funded program also includes a potential $589,000 phase for fabrication and testing.

LIDAR works by measuring the time it takes for light to travel from a laser beam to an object and back into a light detector. The new detector can be used to measure distance, speed and rotation. It will provide high-spatial resolution topography as well as measurements of planetary atmospheric properties: pressure, temperature, chemical composition and ground-layer properties. The device can also be used to probe the environments of comets, asteroids and moons to determine composition, physical processes and chemical variability.

The imaging LIDAR detector will be tested at RIDL in environments that mimic aspects of operations in NASA space missions.

Orginal News Source: EurekAlert

Elusive Molecule Found in Venus’ Atmosphere

Hydroxyl, an important but difficult-to-detect molecule, has been found in the upper atmosphere of Venus by the Venus Express spacecraft. This is the first time this molecule has been detected on another planet, and even though it is thought to be an “atmospheric cleanser,” knowing that it is part of Venus’ thick, greenhouse-like atmosphere will help scientists better understand the environment on our next-door planet. “Venus Express has already shown us that Venus is much more Earth-like than once thought. The detection of hydroxyl brings it a step closer,” said one of the Principal Investigators of the VIRTIS experiment on the Venus Express, Giuseppe Piccioni.

Hydroxyl is thought to be important for any planet’s atmosphere because it is highly reactive. On Earth it has a key role in cleaning pollutants from the atmosphere. On Mars, scientists believe it helps stabilize the carbon dioxide in Mars’ atmosphere, preventing it from converting to carbon monoxide. Also, hydroxyl is thought to play a vital role in sterilizing the Martian soil, making the top layers hostile to microbial life.

Hydroxyl is made up of a hydrogen and oxygen atom each. It has been seen around comets, but the method of production there is thought to be completely different from the way it forms in planetary atmospheres.

On Earth, the glow of hydroxyl in the atmosphere has been shown to be closely linked to the abundance of ozone. From this study, the same is thought to be true at Venus.

Venus Express has shown that the amount of hydroxyl at Venus is highly variable. It can change by 50% from one orbit to the next and this may be caused by differing amounts of ozone in the atmosphere.

“Ozone is an important molecule for any atmosphere, because it is a strong absorber of ultraviolet radiation from the Sun,” says Piccioni. The amount of the radiation absorbed is a key parameter driving the heating and dynamics of a planet’s atmosphere. On Earth, it heats the stratosphere (layer of the atmosphere) making it stable and protecting the biosphere from harmful ultraviolet rays.

Computer models will now be able to tell how this jump and drop in ozone levels over short intervals affects the Venus’ restless atmosphere.

Original News Source: ESA Press Release

“Fusionman” Soars the Skies (Gallery)

A Swiss adventurer who calls himself Fusionman tried out a new jet powered carbon wing, and successfully flew for 5 minutes on May 15 before landing with a parachute. Yves Rossy, a 48-year-old former air force pilot lit the jets on his wing and then jumped from a plane over Bex, Switzerland. He is the world’s first man to fly with jet powered wings.

Rossy performed his first official demonstration of his wings, which are 2.5 meters in diameter and comes with four tiny jets. Once in full flight, Rossy can reach speeds of up to 200km/hr, but he can only stay in the air for a maximum of ten minutes due to the small fuel capacity of his jets.

Rossy, who now works for the Swiss airline, first unveiled his design in 2004. Today he flew like a rocketeer above the Swiss Alps.

Rossy hasn’t always had an easy ride though — during one jump in 2005, he lost control of his wing and didn’t open his parachute until he was just 500 meters above ground.

Since first designing his wing, Rossy has performed more than 30 motorized flights, improving this first prototype with the help of his team. He’s looking to one day have take-off capability with his jet-powered wings. His motto for his test flights: “Always have Plan B ready.”

For more information about Fusionman, see his website. , or the English version

Original News Source: Brisbane Times, AFP

How to Escape From a Black Hole

Black Hole surrounded by dust. Credit: ESA / V. Beckmann (NASA-GSFC)

According to Einstein’s theory of general relativity, black holes are regions of space where gravity is so strong that not even light can escape. And in the 1970’s physicist Stephen Hawking asserted that any information sucked inside a black hole would be permanently lost. But now, researchers at Penn State have shown that information can be recovered from black holes.

A fundamental part of quantum physics is that information cannot be lost, so Hawking’s claim has been debated. His idea was generally accepted by physicists until the late 1990s, when many began to doubt the assertion. Even Hawking himself renounced the idea in 2004. Yet no one, until now, has been able to provide a plausible mechanism for how information might escape from a black hole. A team of physicists led by Abhay Ashtekar, say their findings expand space-time beyond its assumed size, providing room for information to reappear.

Ashtekar used an analogy from Alice in Wonderland: “When the Cheshire cat disappears, his grin remains,” he said. “We used to think it was the same way with black holes. Hawking’s analysis suggested that at the end of a black hole’s life, even after it has completely evaporated away, a singularity, or a final edge to space-time, is left behind, and this singularity serves as a sink for unrecoverable information.”

But the Penn State team suggest that singularities do not exist in the real world. “Information only appears to be lost because we have been looking at a restricted part of the true quantum-mechanical space-time,” said Ashtekar. “Once you consider quantum gravity, then space-time becomes much larger and there is room for information to reappear in the distant future on the other side of what was first thought to be the end of space-time.”

According to Ashtekar, space-time is not a continuum as physicists once believed. Instead, it is made up of individual building blocks, just as a piece of fabric, though it appears to be continuous, is made up of individual threads. “Once we realized that the notion of space-time as a continuum is only an approximation of reality, it became clear to us that singularities are merely artifacts of our insistence that space-time should be described as a continuum.”

To conduct their studies, the team used a two-dimensional model of black holes to investigate the quantum nature of real black holes, which exist in four dimensions. That’s because two-dimensional systems are simpler to study mathematically. But because of the close similarities between two-dimensional black holes and spherical four-dimensional black holes, the team believes that this approach is a general mechanism that can be applied in four dimensions. The group now is pursuing methods for directly studying four-dimensional black holes.

The team’s work will be published in the May 20, 2008 issue of the journal Physical Review Letters.

Original News Source: Penn State Press Release

Pole Shift on Europa?

Curved features on Jupiter’s moon Europa may indicate that its poles have wandered by almost 90°, a new study reports. Researchers believe the drastic shift in Europa’s rotational axis was likely a result of the build-up of thick ice at the poles. “A spinning body is most stable with its mass farthest from its spin axis,” says Isamu Matsuyama of the Carnegie Institution’s Department of Terrestrial Magnetism. “On Europa, variations in the thickness of its outer shell caused a mass imbalance, so the rotation axis reoriented to a new stable state” An extreme shift like this also suggests the existence of an internal liquid ocean beneath the icy crust.

The research team, led by Dr. Paul Schenk of the Lunar and Planetary Institute and joined by Matsuyama and Dr. Francis Nimmo of the University of California, Santa Cruz, used images from the Voyager, Galileo, and New Horizons spacecraft to map several large arc-shaped depressions that extend more than 500 kilometers across Europa’s surface. With a radius of about 1500 kilometers, Europa is slightly smaller than the Earth’s moon.

By comparing the pattern of the depressions with fractures that would result from stresses caused by a shift in Europa’s rotational axis, the researchers determined that the axis had shifted by approximately 80°. The previous axis of rotation is now located about 10° from the present equator.

Such a change is called “true polar wander” as opposed to apparent polar wander caused by plate tectonics. There is evidence for true polar wander on Earth, and also on Mars and on Saturn’s moon Enceladus. “Our study adds Europa to this list,” says Matsuyama. “It suggests that planetary bodies might be more prone to reorientation than we thought.”

The study also has implications for liquid water inside Europa. Many scientists believe Europa has an extensive subsurface ocean based on spacecraft photos showing a fractured, icy surface. The ocean beneath the crust would be kept liquid by heat generated by tidal forces from Jupiter’s gravity. The presence of heat and water may make life possible, even though the subsurface ocean is cut off from solar energy.

“The large reorientation on Europa required to explain the circular depressions implies that its outer ice shell is decoupled from the core by a liquid layer,” says Matsuyama. “Therefore, our study provides an independent test for the presence of an interior liquid layer.”

Original News Source: EurekAlert

New NASA Study Links Humans to Changes On Earth

Changes in glaciers.  Image courtesy of MSNBC
A new NASA-led study shows human-caused climate change has made an impact on a wide range of Earth’s natural systems, including permafrost thawing, plants blooming earlier across Europe, and lakes declining in productivity in Africa. Researchers at NASA’s Goddard Institute for Space Science and 10 other institutions have linked varying impacts since 1970 with rises in temperatures during that period. “Humans are influencing climate through increasing greenhouse gas emissions,” said Cynthia Rosenzweig, lead author of the study. “The warming is causing impacts on physical and biological systems that are now attributable at the global scale and in North America, Europe, and Asia.”
Continue reading “New NASA Study Links Humans to Changes On Earth”