New Chandra Image Is Eye Candy

This picture is too gorgeous not to share it. A new Chandra X-ray telescope image shows a beautiful, dense region of massive stars in the Centaurus constellation. It almost appears as though someone threw a handful of colored candies out into space. Known as Westerlund 2, this star cluster has been a mysterious region of our galaxy, filled with dust and gas that have obscured our vision of what lies inside. But new X-ray observations with Chandra have revealed some of the hottest, brightest and most massive known stars, and this is now regarded as one of the most interesting star clusters in the Milky Way galaxy.

About 20,000 light years from Earth, Westerlund 2 is a young star cluster with an estimated age of about one or two million years. An extremely massive double star system called WR20a is visible in the image, the bright yellow point just below and to the right of the cluster’s center. This system contains stars with whopping masses of 82 and 83 times that of the Sun. The dense streams of matter steadily ejected by these two massive stars, called stellar winds, collide with each other and produce large amounts of X-ray emissions. But alas, no chocolate candies.

This collision is seen at different angles as the stars orbit around each other every 3.7 days.

Several other bright X-ray sources may also show evidence for collisions between winds in massive binary systems.

The Chandra image of Westerlund 2 shows low energy X-rays in red, intermediate energy X-rays in green and high energy X-rays in blue. This is an area that is incredibly dense with massive stars, and bright with X-rays.

Image is 8.4 arc minutes across and was taken by the Chandra Advanced CCD Imaging Spectrometer, which can study temperature variations from x-ray sources.

Download this image for your desktop here.

Original News Source: Chandra Photo Album

NASA Astronaut Survey: No Launch Day Drinking


A NASA survey of astronauts and flight surgeons released on January 23, 2008 turned up no evidence of launch day drinking by flight crews, contradicting an earlier report by a health care panel that disclosed two instances of drunken astronauts. NASA surveyed 87 of all 98 astronauts as well as all 31 flight surgeons. None reported seeing a crew member heavily drinking alcohol on launch day, or within 12 hours of liftoff.

However, the anonymous survey did find one report of “perceived impairment” in an astronaut during the days preceding launch, which was later was traced to an interaction between prescription medication and alcohol. That astronaut was ultimately cleared for flight and launched into space.

“We really never understood from the beginning exactly what might have led to the comment in the health care report,” said Ellen Ochoa, deputy director of Johnson Space Center and a former shuttle astronaut. “We’ve tried to run it to ground. We haven’t uncovered anything. I don’t know of any issues associated with alcohol before flight.”

The healthcare report was conducted in mid-2007 in the wake of astronaut Lisa Nowak’s arrest. Nowak, who traveled from Houston to Florida to confront another woman about a romantic rivalry involving another astronaut, was arrested for attempted kidnapping and burglary with assault. She has yet to stand trial.

NASA established a panel of aerospace medicine experts, led by U.S. Air Force Col. Richard Bachmann, Jr., to look into astronaut mental health. The panel, citing unidentified sources, reported heavy drinking by two astronauts right before launches; one before a shuttle launch and another prior to the launch of a Russian Soyuz rocket. The panel reported that the flight surgeon’s concerns about the astronauts’ impairment were supposedly overruled by management, which created an atmosphere where both astronauts and flight surgeons were reluctant to report improper conduct.

In the new survey, however, conducted in August-December 2007, astronauts and flight surgeons indicated they were not afraid to raise concerns of flight safety, and they felt there is a healthy relationship between astronauts and doctors. But a small number of respondents acknowledged that some astronauts still feel they could lose out on a space assignment if they expressed concerns.

The astronaut survey was conducted and analyzed using both NASA specialists and external academic experts to ensure the study’s validity. “The response rate of the survey was 91 percent, a rate well above what you would normally expect in a survey,” Ochoa said. “That indicates the seriousness with which astronauts and flight surgeons approached this survey.”

The survey focused four areas: the relationship between astronauts and flight surgeons regarding openness of communication, level of trust, and understanding of safety responsibilities; concerns with raising and responding to issues of flight safety and/or crew suitability for flight; knowledge and implementation of policies and procedures detailing astronaut performance and crew assignment; and determining if there was personal knowledge of a US astronaut presenting a risk to flight safety due to alcohol use on launch day.

The 12-hour ban on drinking, which originally an “unwritten rule” is now standard policy. A new astronaut code of conduct is being written, as well.

Dr. Richard Williams, NASA’s chief health and medical officer said that NASA is in a better position today than it was a year ago to detect serious behavioral health problems facing astronauts, and to intervene before it’s too late.

Original News Source: NASA News Release

Near Earth Asteroid 2007 TU24 Will Make a Close Approach on January 29, 2008


An asteroid between 150-160 meters in diameter will pass within 540,000 kilometers (334,000 miles) of Earth on January 29 at 08:33 UT (3:33 EST). Hopefully this news won’t cause any alarmist cries of doom, as the asteroid has no chance of hitting Earth. But there is one reason to get excited about this close approach by an asteroid: it will be close enough to likely be visible to amateur astronomers.

Asteroid 2007 TU24 was discovered by the Catalina Sky Survey on October 11, 2007 and will approach the Earth to within 1.4 lunar distances. During its closest approach, it will reach an approximate apparent magnitude 10.3 on Jan. 29-30 before quickly becoming fainter as it moves further from Earth. So, for a brief time the asteroid will be observable in dark and clear skies with amateur telescopes of 3 inch apertures or larger.

According to NASA’s Near Earth Object Program, since the estimated number of near-Earth asteroids of this size is about 7,000 discovered and estimated undiscovered objects, an object the size of 2007 TU 24 would be expected to pass this close to Earth, on average, about every 5 years or so. They also say the average interval between actual impacts of Earth for an object of this size would be about 37,000 years. But rest assured, for the January 29th encounter, near Earth asteroid 2007 TU24 has no chance of hitting, or affecting, Earth.

2007 TU24 will be the closest currently known approach by an asteroid of this size or larger until 2027. Plans have been made for the Goldstone planetary radar to observe this object Jan 23-24 and for the Arecibo radar to observe it Jan 27-28, as well as Feb 1-4. The NEO office says they should be able to image the object with high resolution radar, and if so, 3-D shape reconstruction images should be possible. Way cool.

The illustration below is courtesy of amateur astronomer Dr. Dale Ireland from Silverdale, WA. The illustration shows the asteroid’s track on the sky for 3 days near the time of the close Earth approach as seen from the city of Philadelphia. Since the object’s parallax will be a significant fraction of a degree, observers are encouraged to use the NEO office’s on-line Horizons ephemeris generation service for their specific locations.

Now, we’re aware that there are some alarmists out there trying to freak people out about this asteroid visit. They’re posing the usual conspiracy theories about the astronomy community’s cover up. Don’t worry, there’s absolutely nothing to fear except a little cold weather as you stand outside, hoping to see the asteroid pass by with your telescope. If you want a more detailed debunking of this myth, check out Bad Astronomy’s excellent coverage.

Original News Source: NEO Program Press Release

Researchers Plan to Launch Paper Airplane from ISS


This is from the “why is anyone spending money on this?” department. Researchers from the University of Tokyo have teamed up with members of the Japan Origami Airplane Association to develop a paper aircraft capable of surviving the flight from the International Space Station to the Earth’s surface. The only problem is that no one knows where the paper airplane might land, and no tracking device is in the works to be used. So, the plan is to do an experiment with no way of gathering any data.

The researchers began testing the strength and heat resistance of an 8 centimeter (3.1 in) long prototype on January 17 in an ultra-high-speed wind tunnel at the University of Tokyo. In the tests, the origami glider — which is shaped like the Space Shuttle and has been treated to withstand intense heat — will be subjected to wind speeds of Mach 7, or about 8,600 kilometers (5,300 miles) per hour.

The researchers claim this paper airplane will come down more slowly than say, a real spacecraft, and it is not expected to burn up on re-entry.

No launch date has been set for the paper spaceplane, but Shinji Suzuki, an aerospace engineering professor at the University of Tokyo, is thinking ahead. “We hope the space station crew will write a message of peace on the plane before they launch it,” says Suzuki. “We don’t know where in the world the plane will land, but it would be nice to send a message to whoever finds it.”

Even if the paper airplane does make it through the atmosphere unscathed, given that our planet is 70% water, don’t hold out much hope for it being found.

Original News Source: Pink Tentacle

Mercury in Living Color

The MESSENGER science team released more pictures from the Jan. 14 flyby, including what we’ve all been waiting for, the first one in color! But if you’re looking for spectacular, eye-catching color, well, sorry, its just not part of Mercury’s make-up.

The color image was created by combining three separate images taken through MESSENGER’s Wide Angle Camera (WAC) filters in the infrared, far red, and violet wavelengths (red, green, and blue filters for this image.) MESSENGER’s eyes can see far beyond the color range of the human eye, and the colors seen in this image are somewhat different from what a human would see.

Creating a false-color image in this way brings out color differences on Mercury’s surface that cannot be seen in the black and white images released earlier.

The WAC has 11 narrow-band color filters, in contrast to the two visible-light filters and one ultraviolet filter that were on Mariner 10’s camera. By combining images taken through different filters in the visible and infrared, the MESSENGER data allow Mercury to be seen in a variety of high-resolution color views not previously possible. This visible-infrared image shows an incoming view of Mercury, about 80 minutes before MESSENGER’s closest pass of the planet from a distance of about 27,000 kilometers (17,000 miles).

I love this image of Mercury’s south pole limb. It shows the terminator; the transition from the sunlit, day side of Mercury to the dark, night side of the planet. In the region near the terminator, the sun shines on the surface at a low angle, causing the rims of craters to cast long shadows, which brings out the height differences of the surface features. This image was acquired about 98 minutes after MESSENGER’s closest approach to Mercury, when the spacecraft was at a distance of about 33,000 kilometers (21,000 miles).

Mercury Spectra.  Image Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington/Laboratory for Atmospheric and Space Physics, University of Colorado
And here’s one for the scientist in you: the first data returned from MESSENGER’s Mercury Atmospheric and Surface Composition Spectrometer (MASCS). What the image on the right shows with the bar-graph type lines is a high-resolution spectra of the planet’s surface in ultraviolet, visible, and near-infrared light. The image on the left shows a portion of the ground-track along which the MASCS instrument took over 650 observations of the surface. The area is about 300 kilometers (190 miles) across. For those of you not fluent in spectra-ese, this shows the relative amount of sunlight reflected from the surface at wavelengths from the ultraviolet to the visible (rainbow) to the infrared.

Original News Source: MESSENGER Press Releases

Should NASA Overhaul Its Vision?


Is the moon really “so yesterday?” An article in the Jan. 18 issue of Aviation Week and Space Technology reported that a group of influential people in the space community will meet in early February to discuss alternatives to NASA’s current Vision for Space Exploration of returning to the moon to prepare for future missions to Mars. But a subsequent letter to the editor in AWST written by Planetary Society President Lou Friedman and Scott Hubbard of Stanford University tried to put the brakes on any notion that the group has already come to a consensus that NASA’s VSE should change direction and destination.

In the letter, Friedman and Hubbard state that the article created “the misperception that the workshop we are organizing at Stanford University has already decided upon a new path for the human and robotic exploration of space. We wish to make it clear that the purpose of the workshop is to examine critically the Vision for Space Exploration in order to prepare for future space policy considerations in a new Administration and new Congress.”

The Aviation Week article reported that the purpose of the February meeting is “to offer the next U.S. president an alternative to President Bush’s ‘vision for space exploration’–one that would delete a lunar base and move instead toward manned missions to asteroids along with a renewed emphasis on Earth environmental spacecraft.”

But Friedman and Hubbard’s letter said, “This point of view is undoubtedly the personal opinion of some participants – but such an opinion is neither a premise nor a presumed outcome of the workshop.” Instead, they said, the workshop will address a many issues of space exploration and the workshop has no predetermined conclusions.

“We have deliberately included a wide range of participants with disparate views, including those who would maintain the status quo. We personally do not know what the conclusions of the workshop will be – or even if there will be a definitive consensus,” said Friedman and Hubbard.

Examining the current Vision is surely a good idea. A Business 101 rule is that once a plan is put into action, you should always stay on top of changing conditions and adjust your plan accordingly, constantly updating and improving. Should NASA consider missions to asteroids instead of the moon? Will going to asteroids get us to Mars more quickly, or is the moon a good, safe place to get our space legs back before moving on?

Hopefully the group meeting at Stanford University in February, as well as the upcoming new political administration in the US, will examine the VSE with open minds, considering both human and robotic missions, and without political agendas.

Another Business 101 tenet is that communication is vital to success. It’s good to see that space exploration is something people are talking about.”

Original News Source: Planetary Society Press Release

Engineering, Budget Problems for NASA’s New Spacecraft


NASA has discovered a potentially dangerous problem with the first stage of the Ares 1 rocket that will launch the new Orion crew capsule to the space station and to the moon. Engineers are concerned that during the first few minutes of flight, the rocket could shake violently, possibly causing significant damage to the entire launch stack. Meanwhile, reports that a budget review of the Constellation program found a short term deficit of $700m that will likely delay test flights and development of the yet-to-be built rockets.

The shaking problem is called thrust oscillation, and is typical in solid rocket motors. The phenomenon is characterized by increased acceleration pulses during the latter part of first-stage flight. Depending on the amplitude of these pulses, the impact on the vehicle structure and astronauts may be quite significant.

The Associated Press reported that NASA discovered the problem in the fall of 2007, but did not discuss the problem publicly until January 18, 2008 after the AP filed a Freedom of Information Act request and Keith Cowing of submitted detailed engineering questions regarding the oscillations.

In the response given to both NASAWatch and AP, NASA said they are working to understand how the thrust oscillation may impact the entire stack – the Ares first stage, upper stage and the Orion crew vehicle — and to determine how to minimize the impact. They have brought in experts from within NASA and outside industry to review the issues and to determine if lessons learned from previous launch vehicles will help solve the problems. NASA said they are studying multiple systems to identify all possible scenarios.

“This is a development project like Apollo. I hope no one was so ill-informed as to believe that we would be able to develop a system to replace the shuttle without facing any challenges in doing so,” NASA Administrator Mike Griffin said in a separate statement to the Associated press. “NASA has an excellent track record of resolving technical challenges. We’re confident we’ll solve this one as well.”

The first stage is a single, five-segment reusable solid rocket booster derived from the Space Shuttle solid rocket motors developed and produced by ATK Launch Systems.

The Ares I rocket is the core of the new space transportation system that will carry crewed missions back to the moon, and possibly on to Mars. The rocket may also use its 29-ton payload capacity to deliver resources and supplies to the International Space Station.

Concerning the problems of budget shortfalls, Ares program managers have offered a re-aligned development and test flight schedule in an attempt to protect Orion’s debut mission to the ISS in 2015.

The reason for the changes relates to additional costs associated with the challenges of Ares I’s development, creating a shortfall of funds for the financial year period 2008 to 2010.

Among numerous changes, a test flight of the Ares I originally scheduled for 2012 has been delayed by a year, while test flights with the Orion crew vehicle will possibly delayed between nine and three months. The Ares V’s lunar mission debut will now be an unmanned fly-by, according to

Original New Sources: Associated Press,

Get Ready for the 2008 Space Elevator Challenge


Looking for an exciting challenge, as well as a way to try and create easy and affordable access to space? The 2008 Space Elevator Beam Power Challenge has been announced by The Spaceward Foundation, and competitors have the chance at a $2 million top prize. And don’t think the picture included here is complete science fiction. Meteor Crater in Arizona is one of the sites being considered for the competition, which consists of climbing a vertically suspended tether using power beaming technology.

The Beam Power Challenge event is tentatively set for September 8, 2008. The objectives for the 2008 competition are climbing a tether 1 kilometer in height, at 5 meters per second minimum speed, for a prize level of $2M.

An intermediate prize level of $900k will be given for a speed of 2 m/s. Additionally, teams that can reach an altitude of 1 km at between 1 and 2 m/s will be awarded a prize of up to $50k.

The 1 km climb will be supported by a unique pyramid-anchored balloon system, providing the teams with a stable tether to climb on.

“In broad strokes, the goal of the Space Elevator games is to bring the Space Elevator closer to reality,” Marc Boucher of the Spaceward Foundation writes on their website. “The goal of the power beaming challenge is to promote power beaming technology. We think that the time is ripe now to move the competition to the next level, addressing real-world power beaming scenarios where the minimum requirements for such systems start at the km range and kWatt power levels.”

This is the fourth year of the Space Elevator Games, which started in 2005. In 2007 Team USST from the University of Saskatchewan was the best performer in the competition, moving their laser-powered 25 kg climber [55 lb] at an average speed of 1.8 m/s [6 ft/sec] over a 94 m run. This corresponds to over 400 Watts of mechanical power maintained for almost a minute. They did this 4 times within 40 minutes. 20 other teams were part of the competition.

This year’s challenge, therefore, is a huge leap from 2007. 1 kilometer is high: it’s the altitude a jetliner is at when the cabin crew asks you to put your laptop away.

“The 1 km challenge really takes us to the next level” says Ben Shelef, CEO of the Spaceward Foundation. “The point of power beaming is that it can work over any distance, and this challenge will illustrate the promise of this technology.”

The prize money is provided by NASA’s Centennial Challenges program. NASA has pledged a total of $4,000,000 starting in 2005 through 2010. The Spaceward Foundation has been distributing the prize money in slowly increasing increments, as the difficulty level of the challenges has been ratcheting up.

The ultimate goal for a space elevator system is to have the climbers ascend a tether 100,000 km long, strung between an anchor on Earth and a counterweight in space. Connecting Earth and space in this way, the space elevator will enable inexpensive access to space which, according to the Spaceward Foundation will “completely expand our society into space.”

In this year’s challenge, Spaceward provides the race track, in the form of a vertically-suspended tether, and the competing teams provide Space Elevator prototypes, featuring climbers that have to scale the tether using only power that is transferred to them from the ground using beamed power.

The climbers net weight is limited to 50 kg [110 lbs], and they must ascend the ribbon at a minimum speed of 2 m/s. [6.6 feet per second] carrying as much payload as possible. A high performance prize will be awarded to teams that can move at 5 m/s. [16.5 fps]

Climbers will be rated according to their speed multiplied by the amount of payload they carried, and divided by their net weight. For example, a 15 kg climber, carrying 10 kg of payload at 2.5 m/s will have a score of 10 X 2.5 / 15 = 1.67

Power is unlimited. It is up to the competitors to build the most power dense machine that they can devise.

In addition to Meteor Crater, other sites being considered include Bonneville Salt Flats in Utah, the Albuquerque, New Mexico Balloon Festival site, White Sands, New Mexico, Brothers Rocket Site in Oregon, Black Rock, Nevada, and any NASCAR raceway sites that are far from airports.

Today (January 18, 2008) the registration fee is $1180 USD, and the price will increase by $10 each day (so get your registrations in early!) This is your big chance to change how we access space and perhaps write a unique chapter in history.

For more comprehensive specifications on the competition, see the Spaceward Foundation’s website.

Original News Source: Spaceward Foundation Press Release

High School Students Discover Asteroid


Here’s another wonderful example of how amateur astronomers can make important discoveries. Three high school students from Wisconsin discovered an asteroid while doing an astronomical observation project for a class in school. Connor Leipold, Tim Patika, and Kyle Simpson of The Prairie School near Racine were notified this week by the Minor Planet Center in Cambridge, Massachusetts that the object they discovered has been verified as an asteroid.

The students will have the opportunity to name the asteroid, temporarily designated as 2008 AZ28. They spotted the asteroid through telescopes located in New Mexico that operate remotely via the internet. The technology was provided through a project sponsored by Calvin College in Grand Rapids, Michigan.

As Fraser and Pamela commented on their Astronomy Cast episode about amateur astronomy, “Astronomy is one of the few sciences where amateurs make can meaningful contributions and discoveries.” And here’s proof. So the rest of you, go out there and start looking!

Original New Source: NewsDaily

A View of Mercury’s Far Side


Images and data are arriving from MESSENGER’s recent flyby of Mercury. Scientists from NASA and the Johns Hopkins Applied Physics Lab are pouring over high resolution images of the side of the planet that has never before been imaged by a spacecraft. From these images, planetary geologists can study the processes that have shaped Mercury’s surface over the past 4 billion years. Let’s take a look at some of the images snapped by MESSENGER on January 14:

This image was taken just 21 minutes after MESSENGER’s closest approach to Mercury, at a distance of only 5,000 kilometers (3600 miles). It shows a region about 170 km (100 miles) across. Visible are a variety of surface features, including craters as small as about 300 meters (about 300 yards) across. But the most striking part of the image is one of the highest and longest cliffs yet seen on Mercury. About 80 km (50 miles) long, it curves from the bottom center up across the right side of this image. Scientists say that great forces in Mercury’s crust must have thrust the terrain occupying the left two-thirds of the picture up and over the terrain to the right. An impact crater has subsequently destroyed a small part of the cliff near the top of the image.

MESSENGER at Mercury.  Image Credit:  Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington
This image shows a previously unseen crater with distinctive bright rays of ejected material from the impact extending outward, providing a look at minerals from beneath Mercury’s surface. A chain of craters nearby is also visible. Studying impact craters provides insight into the history and composition of Mercury. The width of the image is about 370 kilometers (about 230 miles), and was taken about 37 minutes after MESSENGER’s closest approach. This image is the 98th in a set of 99 images that were taken to create a large, high-resolution mosaic of this region of Mercury. Hopefully this anticipated mosaic will be released at a planned press conference on January 30.

MESSENGER at Mercury.  Image Credit:  Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington
As MESSENGER approached Mercury on January 14, 2008, about 56 minutes before the spacecraft’s closest encounter, the Narrow-Angle Camera captured this view of the planet’s rugged, cratered landscape illuminated by the Sun. Although this crater has been imaged before by Mariner 10, MESSENGER’s modern camera has revealed detail that was not well seen by Mariner including the broad ancient depression overlapped by the lower-left part of the Vivaldi crater. Its outer ring has a diameter of about 200 kilometers (about 125 miles). The image shows an area about 500 km 9300 miles) across and craters as small as 1 kilometer (0.6 mile) can be seen. It was taken from a distance of about 18,000 km (11,000 miles.)

The MESSENGER (Mercury Surface Space Environment Geochemistry and Ranging) Science Team has begun analyzing these high-resolution images to unravel the history of Mercury, as well as the history of our solar system.

Original News Source: MESSENGER Website