A Sunlike Star Found With Four (No, Five!) Exoplanets Orbiting It

This artist’s impression shows the view from the planet in the TOI-178 system found orbiting furthest from the star. New research by Adrien Leleu and his colleagues with several telescopes, including ESO’s Very Large Telescope, has revealed that the system boasts six exoplanets and that all but the one closest to the star are locked in a rare rhythm as they move in their orbits. Image Credit: ESO/L. Calçada/spaceengine.org

In just nine months (October 31st, 2021), NASA’s long-awaited James Webb Space Telescope (JWST) will finally be launched to space. Once operational, this next-generation observatory will use its powerful infrared imaging capabilities to study all kinds of cosmological phenomena. It will also be essential to the characterization of extrasolar planets and their atmospheres to see if any are habitable.

In anticipation of this, astronomers have been designating exoplanets as viable candidates for follow-up studies. Using data from the Transiting Exoplanet Survey Satellite (TESS), an international team led by MIT researchers discovered four new exoplanets orbiting a Sun-like star about 200 light-years from Earth. This system could be an ideal place for James Webb to spot a habitable planet.

Continue reading “A Sunlike Star Found With Four (No, Five!) Exoplanets Orbiting It”

Neutrinos Have a Newly Discovered Method of Interacting With Matter, Opening up Ways to Find Them

SCGSR Awardee Jacob Zettlemoyer, Indiana University Bloomington, led data analysis and worked with ORNL’s Mike Febbraro on coatings, shown under blue light, to shift argon light to visible wavelengths to boost detection. Credit: Rex Tayloe/Indiana University

The neutrino is a confounding little particle that is believed to have played a major role in the evolution of our Universe. They also possess very little mass, have no charge, and interact with other particles only through the weak nuclear force and gravity. As such, finding evidence of their interactions is extremely difficult and requires advanced facilities that are shielded to prevent interference.

One such facility is the Oak Ridge National Laboratory (ORNL) where an international team of researchers are conducting the COHERENT particle physics experiment. Recently, researchers at COHERENT achieved a major breakthrough when they found the first evidence of a new kind of neutrino interaction, which effectively demonstrates a process known as coherent elastic neutrino-nuclear scattering (CEvNS).

Continue reading “Neutrinos Have a Newly Discovered Method of Interacting With Matter, Opening up Ways to Find Them”

2020 Ties for the Hottest Year on Record

Credit: NASA/GISS

According to multiple sources – which includes NASA, the NOAA, the Berkeley Earth research group, and the Met Office Hadley Centre (UK) – global temperatures over the past few years have been some of the hottest on record. This is the direct result of anthropogenic factors like overpopulation, urbanization, deforestation, and increased greenhouse gas emissions (like carbon dioxide and methane).

According to a recent press release from NASA, in terms of global temperatures, 2020 was the hottest year on record – effectively tying it with 2016 (the previous record-holder). The release includes a dramatic video that illustrates average temperature increases since 1880 and the ecological crises that have taken place just this past year. This is yet another warning of how human agency is impacting the very systems we depend upon for our continued survival.

Continue reading “2020 Ties for the Hottest Year on Record”

Iceland is a Similar Environment to Ancient Mars

Credit: NASA/Michael Thorpe

Mars is often referred to as “Earth’s Twin” because of the similarities the two planets have. In fact, Mars is ranked as the second most-habitable planet in the Solar System behind Earth. And yet, ongoing studies have revealed that at one time, our two planets had even more in common. In fact, a recent study showed that at one time, the Gale Crater experienced conditions similar to what Iceland experiences today.

Since 2012, the Curiosity rover has been exploring the Gale Crater in search of clues as to what conditions were like there roughly 3 billion years ago (when Mars was warmer and wetter). After comparing evidence gathered by Curiosity to locations on Earth, a team from Rice University concluded that Iceland’s basaltic terrain and cool temperatures are the closest analog terrain to ancient Mars there is.

Continue reading “Iceland is a Similar Environment to Ancient Mars”

Space and Sustainability: How the Lessons of Biosphere 2 Inspired SAM²

A lot has been said, penned, and documented about the famous experiment known as “Biosphere 2” (B2). For anyone whose formative years coincided with the early 90s, this name probably sounds familiar. Since the project launched in 1991, it has been heavily publicized, criticized, and was even the subject of a documentary – titled “Spaceship Earth” – that premiered in May of 2020.  

To listen to some of what’s been said about B2 (even after 30 years), one might get the impression that it was a failure that proved human beings cannot live together in a sealed environment for extended periods of time. But in truth, it was a tremendous learning experience, the results of which continue to inform human spaceflight and ecosystem research today. In an era of renewed interplanetary exploration, those lessons are more vital than ever.

This is the purpose behind the Space Analog for the Moon and Mars (SAM²), a new analog experiment led by Kai Staats and John Adams. Along with an international team of specialists, experts from the University of Arizona, and support provided by NASA, the National Geographic Society, and commercial partners, SAM² will validate the systems and technology that will one-day allow for colonies on the Moon, Mars, and beyond.

Continue reading “Space and Sustainability: How the Lessons of Biosphere 2 Inspired SAM²”

A New Idea to Harness Energy From Black Holes

Credit: Francis Reddy/NASA GSFC

Fifty years ago, English mathematical physicist and Nobel-prize winner Roger Penrose proposed that energy could be extracted from the space around a rotating black hole. Known as the ergosphere, this region lies just outside an event horizon, the boundary within which nothing can escape a black hole’s gravitational pull (even light). It is also here where infalling matter is accelerated to incredible speeds and emits all kinds of energy.

This became known as the Penrose Process, which many theorists have since expanded on. The latest comes from a study conducted by researchers from Columbia University and the Universidad Adolfo Ibáñez in Chile. With support from organizations like NASA, they demonstrated how a better understanding of the physics at work around spinning black holes could allow us to harness their energy someday.

Continue reading “A New Idea to Harness Energy From Black Holes”

Starships Will be Launching From These Oil Drilling Platforms Bought by SpaceX

Credit: SpaceX

Over the years, Elon Musk has been rather open about how he (and the company he founded) plan to make space more accessible and allow humanity to become an “interplanetary species.” A key element to this plan is the Starship and Super-Heavy launch system, which will allow for regular trips to the Moon as well as the eventual creation of the first human colony on Mars.

Another key part of Musk’s plan is the creation of spaceports at sea that will allow for greater flexibility with launches and landings. To that end, SpaceX recently acquired two former oil drilling rigs off the coast of Texas. These spaceports have been dubbed Phobos and Deimos (after Mars’ two satellites) and are currently undergoing modifications to conduct Starship launches in the near future.

Continue reading “Starships Will be Launching From These Oil Drilling Platforms Bought by SpaceX”

Virgin Orbit Successfully Launches a Batch of Satellites From an Airplane

Credit: Virgin Orbit

On Sunday, January 17th, Virgin Orbit conducted the second launch test of its LauncherOne rocket, which the company will use to deploy small satellites to orbit in the coming years. The mission (Launch Demo 2) went smoothly and validated the company’s delivery system, which consists of the rocket air launching from a repurposed 747-400 (named Cosmic Girl).

It also involved the successful deployment of 10 CubeSats which were selected by NASA’s Launch Services Program (LSP) as part of the agency’s CubeSat Launch Initiative (CSLI). The event began when Cosmic Girl took off from the Mojave Air and Space Port at approximately 10:50 A.M. PST (01:50 P.M. EST) and flew to a location about 80 km (50 mi) south of the Channel Islands in the Pacific Ocean.

Continue reading “Virgin Orbit Successfully Launches a Batch of Satellites From an Airplane”

A Habitat at Ceres Could be the Gateway to the Outer Solar System

Artist's impression of the interior of an O'Neill Cylinder. Credit: Don Davis/NASA

In the near future, humanity stands a good chance of expanding its presence beyond Earth. This includes establishing infrastructure in Low Earth Orbit (LEO), on the surface of (and in orbit around) the Moon, and on Mars. This presents numerous challenges, as living in space and on other celestial bodies entails all kinds of potential risks and health hazards – not the least of which are radiation and long-term exposure to low gravity.

These issues demand innovative solutions; and over the years, several have been proposed! A good example is Dr. Pekka Janhunen‘s concept for a megasatellite settlement in orbit around the dwarf planet Ceres, the largest object in the Main Asteroid Belt. This settlement would provide artificial gravity for its residents while the local resources would allow for a closed-loop ecosystem to created inside – effectively bringing “terraforming” to a space settlement.

Continue reading “A Habitat at Ceres Could be the Gateway to the Outer Solar System”

According to the Math, it’s Highly Unlikely That an Intelligent Civilization is Located at Alpha Centauri

The Parkes radio telescope at Parkes Observatory in New South Wales, Australia. Astronomers using the telescope detected what appeared to be a radio signal coming from the direction of Proxima Centauri in April and May 2019. Image via Daniel John Reardon/ Wikimedia Commons.

In December of 2020, the world got a bit of a pre-holiday surprise when it was announced that astronomers at the Parkes radio telescope in Australia had detected a “tantalizing” signal coming from Proxima Centauri (the red dwarf companion of the Alpha Centauri system). Afterward, researchers at Breakthrough Listen consulted the data on the signal – Breakthrough Listen Candidate 1 (BLC1) – and noted the same curious features.

However, the scientific community has since announced that the signal is unlikely to be anything other than the result of natural phenomena. This was also the conclusion reached by Amir Siraj and Prof. Abraham Loeb of Harvard University after they conducted a probability assessment on BLC1. Like the vast majority of candidate radio signals discovered to date, this one appears to be just the forces of nature saying hello.

Continue reading “According to the Math, it’s Highly Unlikely That an Intelligent Civilization is Located at Alpha Centauri”