What is Halley’s Comet?

The Mawangdui silk, showing the shapes of comet tails and the different disasters associated with them, compiled in around 300 BC. Credit: NASA/JPL.

Halley’s Comet, also known as 1P/Halley, is the most well known comet in the Solar System. As a periodic (or short-term comet) it has orbital period that is less than 200 years, and has therefore been observed more than once by people here on Earth over the centuries.

It’s appearance in the skies above Earth has been noted since ancient times, and was associated with both bad and good omens by many cultures. But in truth, its behavior is no different than any short-term visitor that swings by from time to time. And its visits have become entirely predictable!

Discovery:
Halley’s Comet has been observed and recorded by astronomers since at least 240 BCE, with clear references to the comet being made by Chinese, Babylonian, and medieval European chroniclers. However, these records did not recognize that the comet was the same object reappearing over time. It was not until 1705 that English astronomer Edmond Halley, who used Newton’s Three Laws of Motion to determine that it was periodic.

Until the Renaissance, astronomers’ believed that comets – consistent with Aristotle’s views – were merely disturbances in the Earth’s atmosphere. This idea was disproved in 1577 by Tycho Brahe, who used parallax measurements to show that comets must lie beyond the Moon. However, for another century, astronomers would continue to believe that comets traveled in a straight line through the Solar System rather than orbiting the Sun.

In 1687, in his Philosophiæ Naturalis Principia Mathematica, Isaac Newton theorized that comets could travel in an orbit of some sort. Unfortunately, he was unable to develop a coherent model for explaining this at the time. As such, it was Edmond Halley – Newton’s friend and editor –  who showed how Newton’s theories on motion and gravity could be applied to comets.

In his 1705 publication, Synopsis of the Astronomy of Comets, Halley calculated the effect that Jupiter and Saturn’s gravitational fields would have on the path of comets. Using these calculations and recorded observations made of comets, he was able to determine that a comet observed in 1682 followed the same path as a comet observed in 1607.

Pairing this with another observation made in 1531, he concluded that these observations were all of the same comet, and predicted that it would return in another 76 years. His prediction proved to be correct, as it was seen on Christmas Day, 1758, by a German farmer and amateur astronomer named Johann Georg Palitzsch.

His predictions not only constituted the first successful test of Newtonian physics, it was also the first time that an object besides the planets was shown to be orbiting the Sun. Unfortunately for Halley, he did not live to see the comet’s return (having died in 1742). But thanks to French astronomer Nicolas Louis de Lacaille, the comet was named in Halley’s honor in 1759.

The illustration shows a view of Augsburg, Germany with the comets of 1680, 1682, and 1683 in the sky. Click on image for larger view. Image credit: NASA/JPL
The illustration shows a view of Augsburg, Germany with the comets of 1680, 1682 (Halley’s Comet), and 1683 in the sky. Credit: NASA/JPL

Origin and Orbit:
Like all comets that take less than about 200 years to orbit the Sun, Halley’s Comet is believed to have originated from the Kuiper Belt. Periodically, some of these blocks of rock and ice – which are essentially leftover matter from the formation of the Solar System some 4.6 billion years ago – are pulled deeper into the Solar System and becomes active comets.

In 2008, another point of origin for the Halley-type comets had been proposed when a trans-Neptunian object with a retrograde orbit similar to Halley’s was discovered. Known as 2008 KV42, this comet’s orbit takes it from just outside the orbit of Uranus to twice the distance of Pluto. This suggests that Halley ‘s Comet could in fact be member of a new population of small Solar System bodies that is unrelated to the Kuiper Belt.

Halley is classified as a periodic or short-period comet, one with an orbit lasting 200 years or less. This contrasts with long-period comets, whose orbits last for thousands of years and which originate from the Oort Cloud – the sphere of cometary bodies that is 20,000 – 50,000 AU from the Sun at its inner edge. Other comets that resemble Halley’s orbit, with periods of between 20 to 200 years, are called Halley-type comets. To date, only 54 have been observed, compared with nearly 400 identified Jupiter-family comets.

Artists' impression of the Kuiper belt and Oort cloud, showing both the origin and path of Halley's Comet. Image credit: NASA/JPL.
Artists’ impression of the Kuiper belt and Oort cloud, showing both the origin and path of Halley’s Comet. Credit: NASA/JPL

Halley’s orbital period over the last 3 centuries has been between 75–76 years, although it has varied between 74–79 years since 240 BC. Its orbit around the Sun is highly elliptical. It has a perihelion (i.e. the point where it is nearest the Sun) of just 0.6 AU, which places it between the orbits of Mercury and Venus. Meanwhile, it’s aphelion – the farthest distance from the Sun – is 35 AU, the same distance as Pluto.

Unusual for an object in the Solar System, Halley’s orbit is retrograde – which means that it orbits the Sun in the opposite direction to the planets (or clockwise from above the Sun’s north pole). Due to the retrograde orbit, it has one of the highest velocities relative to the Earth of any object in the Solar System.

The orbits of the Halley-type comets suggest that they were originally long-period comets whose orbits were perturbed by the gravity of the gas giants and directed into the inner Solar System. If Halley was once a long-period comet, it is likely to have originated in the Oort Cloud. However, Halley is believed to have been a short-term comet for the past 16,000–200,000 years.

Because its orbit comes close to Earth’s in two places, Halley is the parent body of two meteor showers: the Eta Aquariids in early May, and the Orionids in late October. Observations conducted around the time of Halley’s appearance in 1986, however, suggest that the Eta Aquarid meteor shower might not originate from Halley’s Comet, although it might be perturbed by it.

Photo of Haley's Comet crossing the Milky Way, taken by the Kuiper Airborne Observatory in New Zealand on April 8th/9th, 1986. Credit: NASA
Photo of Haley’s Comet crossing the Milky Way, taken by the Kuiper Airborne Observatory in New Zealand on April 8th/9th, 1986. Credit: NASA

Structure and Composition:
As Halley approaches the Sun, it expels jets of sublimating gas from its surface, which knock it very slightly off its orbital path. This process causes the comet to form a bright tail of ionized gas (ion tail), and a faint one made up of dust particles. The ion tail is also known as a coma (a small atmosphere) which spans up to 100,000 km across and consists of violatiles such as water, methane, ammonia and carbon dioxide.

Despite the vast size of its coma, Halley’s nucleus is relatively small – barely 15 kilometers long, 8 kilometers wide and roughly 8 kilometers thick. Its mass is also relatively low (an estimated 2.2 × 1014 kg, or 242.5 billion tons) and its average density is about 0.6 g/cm3, indicating that it is made of a large number of small pieces held loosely together.

Spacecraft observations have shown that the gases ejected from the nucleus were 80% water vapor, 17% carbon monoxide and 3–4% carbon dioxide, with traces of hydrocarbons (although more-recent sources give a value of 10% for carbon monoxide and also include traces of methane and ammonia).

The dust particles have been found to be primarily a mixture of carbon–hydrogen–oxygen–nitrogen (CHON) compounds – which are common in the outer Solar System – and silicates, like those found in terrestrial rocks. At one time, it was thought that Halley could have delivered water to Earth in the distant past – based on the ratio of deuterium to hydrogen found in the comet’s water that showed it to be chemically similar to the Earth’s oceans. However, subsequent observations have indicated that this is unlikely.

This view of comet Halley's nucleus was obtained by the Halley Multicolour Camera (HMC) on board the Giotto spacecraft, as it passed within 600 km of the comet nucleus on March 13, 1986. Credit: ESA
The nuclear of Halley’s Comet, obtained by the Halley Multicolour Camera (HMC) on board the Giotto spacecraft during its flyby on March 13, 1986. Credit: ESA

The ESA’s Giotto (1985-1992) and Russia’s Vega missions (1986) gave planetary scientists their first view of Halley’s surface and structure. The images could only capture roughly 25% of the comet’s surface, but nevertheless revealed an extremely varied topography – with hills, mountains, ridges, depressions, and at least one crater.

Role in Myths and Superstitions:
As already noted, Halley’s Comet has a long and rich history when it comes to being observed by humans. Including its most recent visits, Halley’s Comet has been visible from Earth on 30 separate occasions. The earliest record of which were the Shih Chi and Wen Hsien Thung Khao chronicles, written in China ca. 240 BCE.

While it is believed that Babylonian scribes recorded the appearance of Halley’s Comet when it returned in 164 and 87 BCE, it’s most famous appearance occurred shortly before the 1066 invasion of England by William the Conqueror. Whereas King Harold of England saw the comet as a bad omen, William and his forces interpreted it as a sign of their impending victory (at least according to legend).

Throughout the Middle Ages, the appearances of comets in the night sky were seen as heralds of bad news, indicating that either a person of royal standing had died, or that dark days lay ahead. This is perhaps owing to what was seen as the erratic and unpredictable behavior of comets, when compared to the Sun, the Moon and the stars.

The Bayeux Tapestry, showing the appearance of Halley's Comet in the sky prior to William the Conqueror's invasion of England. Credit: Wikipedia Commons/Myrabella
The Bayeux Tapestry, showing the appearance of Halley’s Comet in the sky in 1066. Credit: Wikipedia Commons/Myrabella

With the development of modern astronomy, this view of comets has been largely dispelled. However, there are many who still hold to the “doom and gloom” view of Halley’s Comet, believing that it will strike the Earth at some point and trigger an Extinction Level Event, the likes of which has not been seen since the Dinosaurs.

Disappearance:
Halley’s overall lifespan is difficult to predict, and opinions do vary. In 1989, Russian astronomers Boris Chirikov and Vitaly Vecheslavov performed an analysis of 46 apparitions of Halley’s Comet taken from historical records and computer simulations. Their study showed that the comet’s dynamics were chaotic and unpredictable over long timescales, and indicated that its lifetime could be as long as 10 million years.

In 2002, David C. Jewitt conducted a study that indicated that Halley will likely evaporate, or split in two, within the next few tens of thousands of years. Alternately, Jewitt predicted that it could survive long enough to be ejected from the Solar System entirely within a few hundred thousand years.

Meanwhile, observations conducted by D.W. Hughes et al. suggests that Halley’s nucleus has been reduced in mass by 80–90% over the last 2000–3000 revolutions (i.e. 150,000 – 230,000 years). By their estimations, it would not be surprising at all if the comet evaporated entirely within the next 300 revolutions or so (approx. 25,000 years).

The last time Halley’s Comet was seen was in 1986, which means it will not reappear until 2061. As always, some are choosing to prepare for the worst – believing its next pass will signal the end of life as we know it – while others are contemplating if they will live long enough to witness it.

Universe Today has articles on famous comets and distant Halley’s Comet.

For more information, take a look at Comet Halley and Halley’s Comet.

Astronomy Cast has an episode on comets.

Sources: Wikipedia, NASA

What are the Galilean Moons?

Illustration of Jupiter and the Galilean satellites. Credit: NASA

It’s no accident that Jupiter shares its name with the king of the gods. In addition to being the largest planet in our Solar System – with two and a half times the mass of all the other planets combined – it is also home to some of the largest moons of any Solar planet. Jupiter’s largest moons are known as the Galileans, all of which were discovered by Galileo Galilei and named in his honor.

They include Io, Europa, Ganymede, and Callisto, and are the Solar System’s fourth, sixth, first and third largest satellites, respectively. Together, they contain almost 99.999% of the total mass in orbit around Jupiter, and range from being 400,000 and 2,000,000 km from the planet. Outside of the Sun and eight planets, they are also among the most massive objects in the Solar System, with radii larger than any of the dwarf planets.

Continue reading “What are the Galilean Moons?”

What are the Different Types of Renewable Energy?

The Gemasolar solar power plant, situated near Seville in Spain. Credit: Torresol Energy

Renewable energy is becoming an increasingly important issue in today’s world. In addition to the rising cost of fossil fuels and the threat of Climate Change, there has also been positive developments in this field which include improvements in efficiency as well as diminishing prices.

All of this has increased the demand for alternative energy and accelerated the transition towards cleaner, more sustainable methods of electrical power. However, it is important to note that are many kinds – biomass, solar, wind, tidal, and geothermal power – and that each has its own share of advantages and drawbacks.

Biomass:

The most widely used form of renewable energy is biomass. Biomass simply refers to the use of organic materials and converting them into other forms of energy that can be used. Although some forms of biomass have been used for centuries – such as burning wood – other, newer methods, are focused on methods that don’t produce carbon dioxide.

Biomass - which involves converting organic materials into energy - can come from a variety of sources. Credit: ecoble.com
Biomass – which involves converting organic materials into energy – can come from a variety of sources. Credit: ecoble.com

For example, there are clean burning biofuels that are alternatives to oil and gas. Unlike fossil fuels, which are produced by geological processes, a biofuel is produced through biological processes – such as agriculture and anaerobic digestion. Common fuels associated with this process are bioethanol, which is created by fermenting carbohydrates derived from sugar or starch crops (such as corn, sugarcane, or sweet sorghum) to create alcohol.

Another common biofuel is known as biodiesel, which is produced from oils or fats using a process known as transesterification – where acid molecules are exchanged for alcohol with the help of a catalyst. These types of fuels are popular alternatives to gasoline, and can be burned in vehicles that have been converted to run on them.

Solar Power:

Solar power (aka. photovoltaics) is one of the most popular, and fastest-growing, sources of alternative energy. Here, the process involves solar cells (usually made from slices of crystalline silicon) that rely on the photovoltaic (PV) effect to absorb photons and convert them into electrons. Meanwhile, solar-thermal power (another form of solar power) relies on mirrors or lenses to concentrate a large area of sunlight, or solar thermal energy (STE), onto a small area (i.e. a solar cell).

Initially, photovoltaic power was only used for small to medium-sized operations, ranging from solar powered devices (like calculators) to household arrays. However, ever since the 1980s, commercial concentrated solar power plants have become much more common. Not only are they a relatively inexpensive source of energy where grid power is inconvenient, too expensive, or just plain unavailable; increases in solar cell efficiency and dropping prices are making solar power competitive with conventional sources of power (i.e. fossil fuels and coal).

The Ivanpah Solar Power Facility in California, showing its three towers delivering concentrated solar power. Credit: Wikipedia commons/Sbharris
The Ivanpah Solar Power Facility in California, showing its three towers delivering concentrated solar power. Credit: Wikipedia commons/Sbharris

Today, solar power is also being increasingly used in grid-connected situations as a way to feed low-carbon energy into the grid. By 2050, the International Energy Agency anticipates that solar power – including STE and PV operations – will constitute over 25% of the market, making it the world’s largest source of electricity (with most installations being deployed in China and India).

Wind Power:

Wind power has been used for thousands of years to push sails, power windmills, or to generate pressure for water pumps. Harnessing the wind to generate electricity has been the subject of research since the late 19th century. However, it was only with major efforts to find alternative sources of power in the 20th century that wind power has become the focal point of considerable research and development.

Compared to other forms of renewable energy, wind power is considered very reliable and steady, as wind is consistent from year to year and does not diminish during peak hours of demand. Initially, the construction of wind farms was a costly venture. But thanks to recent improvements, wind power has begun to set peak prices in wholesale energy markets worldwide and cut into the revenues and profits of the fossil fuel industry.

According to a report issued this past March by the Department of Energy, the growth of wind power in the United States could lead to even more highly skilled jobs in many categories. Titled “Wind Vision: A New Era for Wind Power in the United States”, the document indicates that by 2050, the industry could account for as much as 35% of the US’ electrical production.

In Denmark, wind power accounts for 28% of electrical production and is cheaper than coal power. Credit: denmark.dk
In Denmark, wind power accounts for 28% of the country’s electrical production, and is now cheaper than coal power. Credit: denmark.dk

In addition, last year, the Global Wind Energy Council and Greenpeace International came together to publish a report titled “Global Wind Energy Outlook 2014”. This report stated that worldwide, wind power could provide as much as 25 to 30% of global electricity by 2050. At the time of the report’s writing, commercial installations in more than 90 countries had a total capacity of 318 gigawatts (GW), providing about 3% of global supply.

Tidal Power:

Similar to wind power, tidal power is considered to be a potential source of renewable energy because tides are steady and predictable. Much like windmills, tide mills have been used since the days of Ancient Rome and the Middle Ages. Incoming water was stored in large ponds, and as the tides went out, they turned waterwheels that generated mechanical power to mill grain.

It was only in the 19th century that the process of using falling water and spinning turbines to create electricity was introduced in the U.S. and Europe. And it has only been since the 20th that these sorts of operations have been retooled for construction along coastlines and not just rivers.

Traditionally, tidal power has suffered from relatively high cost and limited availability of sites with sufficiently high tidal ranges or flow velocities. However, many recent technological developments and improvements, both in design and turbine technology, indicate that the total availability of tidal power may be much higher than previously assumed, and that economic and environmental costs may be brought down to competitive levels.

Credit: Carnegie Wave Energy
Artist’ concept of a series of the Carnegie Wave Energy’s tidal system, where buoys anchored to the sea floor and use swells to move a series of pumps. Credit: Carnegie Wave Energy

The world’s first large-scale tidal power plant is the Rance Tidal Power Station in France, which became operational in 1966. And in Orkney, Scotland, the world’s first marine energy test facility – the European Marine Energy Center (EMEC) – was established in 2003 to start the development of the wave and tidal energy industry in the UK.

In 2015, the world’s first grid-connected wave-power station (CETO, named after the Greek goddess of the sea) went online off the coast of Western Australia. Developed by Carnegie Wave Energy, this power station operates under water and uses undersea buoys to pump a series of seabed -anchored pumps, which in turn generates electricity.

Geothermal:

Geothermal electricity is another form of alternative energy that is considered to be sustainable and reliable. In this case, heat energy is derived from the Earth – usually from magma conduits, hot springs or hydrothermal circulation – to spin turbines or heat buildings. It is considered reliable because the Earth contains 1031 joules worth of heat energy, which naturally flows to the surface by conduction at a rate of 44.2 terawatts (TW) – more than double humanity’s current energy consumption.

One drawback is the fact that this energy is diffuse, and can only be cheaply harnessed in certain locations. However, in certain areas of the world, such as Iceland, Indonesia, and other regions with high levels of geothermal activity, it is an easily accessible and cost-effective way of reducing dependence on fossil fuels and coal to generate electricity. Countries generating more than 15 percent of their electricity from geothermal sources include El Salvador, Kenya, the Philippines, Iceland and Costa Rica.

The Krafla a geothermal power station located i0n Iceland. Credit: Wikipedia Commons/Ásgeir Eggertsson
The Krafla a geothermal power station located in Iceland. Credit: Wikipedia Commons/Ásgeir Eggertsson

As of 2015, worldwide geothermal power capacity amounts to 12.8 gigawatts (GW), which is expected to grow to 14.5 to 17.6 GW by 2020. What’s more, the Geothermal Energy Association (GEA) estimates that only 6.5 percent of total global potential has been tapped so far, while the IPCC reported geothermal power potential to be in the range of 35 GW to 2 TW.

Issues with Adoption:

One problem with many forms of renewable energy is that they depend on circumstances of nature – wind, water supply, and sufficient sunlight – which can impose limitations. Another issue has been the relative expense of many forms of alternate energy compared to traditional sources such as oil and natural gas. Until very recently, running coal-fired or oil-powered plants was cheaper than investing millions in the construction of large solar, wind, tidal or geothermal operations.

However, ongoing improvements made in the production of solar cells, wind turbines, and other equipment – not to mention improvements made in the amount of energy produced – has resulted in many forms of alternative energy becoming competitive with other methods. All over the world, nations and communities are stepping up to accelerate the transition towards cleaner, more sustainable, and more self-sufficient methods.

We have written many interesting articles on alternative energy on Universe Today. Here’s What is Alternative Energy?, What is Solar Energy? and Where does Geothermal Energy Come From?, Could the World Run on Solar and Wind Power?, and Harvesting Solar Power from Space.

You should also check out the National Renewable Energy Laboratory and Renewable Energy Policy Project.

Astronomy Cast also has an episode on the subject. Here’s Episode 51: Earth.

Sources:

What Does NASA Stand For?

NASA Logo. Credit: NASA

Chances are that if you have lived on this planet for the past half-century, you’ve heard of NASA. As the agency that is in charge of America’s space program, they put a man on the Moon, launched the Hubble Telescope, helped establish the International Space Station, and sent dozens of probes and shuttles into space.

But do you know what the acronym NASA actually stands for? Well, NASA stands for the National Aeronautics and Space Administration. As such, it oversees America’s spaceflight capabilities and conducts valuable research in space. NASA also has various programs on Earth dedicated to flight, hence why the term “Aeronautics” appears in the agency’s name.

Continue reading “What Does NASA Stand For?”

Uranus’ Moon Umbriel

Uranus and its five major moons
Uranus and its five major moons. Credit:

The 19th century was an auspicious time for astronomers and planet hunters. In addition to the discovery of the Asteroid Belt that rests between Mars and Jupiter – as well as the many minor planets within – the outer solar planet of Uranus and its series of moons were also observed for the very first time.

Of these, Umbriel was certainly one of the most interesting finds. Aside from being Uranus’ third largest moon, it is also its darkest – a trait which contributed greatly to the selection of its name. And to this day, this large satellite of Uranus is shrouded in mystery…

Discovery and Naming:

Umbriel, along with its fellow moon Ariel, was discovered by English astronomer William Lassell on October 24th, 1851. Fellow English astronomer William Herschel, who had discovered Uranus’ moons of Titania and Oberon at the end of the 18th century, also claimed to have observed four additional moons around Uranus. However, his observations were not confirmed, leaving the confirmed discoveries of Ariel and Umbriel to Lassell, roughly half a century later.

Much like all of Uranus’ 27 moons, Umbriel was named after a character from Alexander Pope’s The Rape of the Lock, as well as plays by William Shakespeare. These names were suggested by John Herschel, the son of William Herschel, when he announced the discoveries of Titania and Oberon.

Size comparison of Earth, the Moon, and Umbriel. Credit: /Public Domain
Size comparison of Earth, the Moon, and Umbriel. Credit: Tom Reding/Public Domain

In keeping with the moon’s dark appearance, the name Umbriel – which was the name of the ‘dusky melancholy sprite’ in the The Rape of the Lock and is derived from the Latin Umbra (which means “shadow”) – seemed most appropriate for this satellite.

Size, Mass and Orbit:

Ariel and Umbriel are nearly the same size, with diameters of 1,158 kilometers and 1,170 kilometers respectively. Based on spectrograph analyses and estimates of the moon’s mass and density, astronomers believe that the majority of the planet consists of water ice, with a dense non-ice component constituting around 40% of its mass.

This could mean that Umbriel consists of an icy outer shell that surrounds a rocky core, or one made out of carbonaceous materials. It also means that though Umbriel is the third largest moon of Uranus, it is only the fourth largest in terms of mass. Furthermore, its dark appearance is believed to be the result of the interactions of surface water ice with energetic particles from Uranus’ magnetosphere.

These energetic particles would cause methane deposits (trapped in the ice as clathrate hydrate) to decompose and other organic molecules to darken, leaving behind a dark, carbon-rich residue. The satellite’s dark color is also due to its very low bond albedo – which is basically the amount of electromagnetic radiation (i.e. light) that gets reflected back from the surface.

So far, spectrographic analyses have only confirmed the existence of water and carbon dioxide. So the existence of organic particles or methane deposits in the ice remains theoretical. However, their presence would explain the prevalence of CO² and why it is concentrated mainly on the trailing hemisphere.

Umbriel’s orbital period – i.e. the time it takes the moon to orbit Uranus – is approximately 4.1 days, which is coincident with its rotational period. This means that the moon is a synchronous and tidally-locked satellite, with one face always pointing towards Uranus. The satellite is at an average distance of 266,000 kilometers from its planet, which makes it the third farthest from Uranus, behind Miranda and Ariel.

Voyager 2:

So far, the only close-up images of Umbriel have been provided by the Voyager 2 probe, which photographed the moon during its flyby of Uranus in January of 1986. During this flyby, the closest distance between Voyager 2 and Umbriel was 325,000 km (202,000 mi).

The images cover about 40% of the surface, but only 20% was photographed with the quality required for geological mapping. At the time of the flyby, the southern hemisphere of Umbriel was pointed towards the Sun – so the northern, darkened hemisphere could not be studied. At present, no future missions are planned to study the moon in greater detail.

US Geological Survey map of Umbriel. Credit: ISGS
US Geological Survey map of Umbriel, showing its cratered surface and polygons. Credit: ISGS

Interesting Facts:

The surface of Umbriel has far more and larger craters than do Ariel and Titania, ranging in diameter from a few kilometers to several hundred. The largest known crater on the surface is Wokolo, which is 210 km in diameter. Wunda, a crater with a diameter of about 131 kilometers, is the most noticeable surface feature, due to the ring of bright material on its floor (which scientists think are from the impact).

Other craters include Fin, Peri, and Zlyden which, like all of Umbriel’s surface features, are named after dark sprites from different cultures’ mythology. The only satellite of Uranus to have more craters is Oberon, and the planet is believed to be geologically stable.

It is further believes that surface has probably been stable since the Late Heavy Bombardment. The only signs of ancient internal activity are canyons and dark polygons – dark patches with complex shapes measuring from tens to hundreds of kilometers across. The polygons were identified from  precise photometry of Voyager 2′s images and are distributed more or less uniformly on the surface of Umbriel, trending northeast – southwest.

Because Uranus orbits the Sun almost on its side, it is subject to an extreme seasonal cycle. Both northern and southern poles spend 42 years in complete darkness, and another 42 years in continuous sunlight, with the Sun rising close to the zenith over one of the poles at each solstice.

The southern hemisphere of Umbriel displays heavy cratering in this Voyager 2 image, taken Jan. 24, 1986, from a distance of 557,000 kilometers (346,000 miles). Credit: NASA/JPL
The southern hemisphere of Umbriel displays heavy cratering in this Voyager 2 image, taken Jan. 24, 1986. The large impact crater of Wunda is visible at the top. Credit: NASA/JPL

Because they are in the planet’s equatorial plane, Uranus’ satellites also experience these changes. This means that Umbriel’s north and south poles spend 42 years in light and then 42 years in darkness before repeating the cycle. In fact, the Voyager 2 flyby coincided with the southern hemisphere’s 1986 summer solstice, when nearly the entire northern hemisphere was in darkness.

Interesting little moon isn’t it? Even though no missions are currently planned to observe it in the coming years, one can only hope that future satellites happen to sneak a peek at it on their way to some other destination in the outer Solar System.

Universe Today has many interesting articles on the moons of Uranus, like how many moons does Uranus have?

You should also check out NASA’s page on Umbriel and Uranus’ moon Umbriel at Nine Planets.

Astronomy Cast has an episode on Uranus that you should check out.

Sources:

Who Are The Most Famous Astronauts?

Apollo 11 Crew Photo. Credit: NASA

There have been many astronauts who have made tremendous contributions to our knowledge of space. But asking “who is the most famous?” is somewhat tricky. For one, its a bit subjective. And second, it can be hard to objectively measure just how important and individuals contributions really are. Surely, all astronauts are deserving of recognition and respect for their bravery and contributions to the pursuit of knowledge.

Nevertheless, in the course of human space exploration, some names do stand out more than others. And some have made such immense contributions that their names will live on long after we too have passed away. So without further ado, here are just a few of the most famous astronauts, along with a list of their accomplishments.

Yuri Gagarin:

As the first man to ever go into space, no list of famous astronauts would be complete without Yuri Gagarin. Born in the village of Klushino in the Smolensk Oblast on March 9th, 1934, Gagarin was drafted into the Soviet Air Force in 1955 and trained in the use of jet fighters. In 1960, he was selected alongside 19 other pilots to join the newly-formed Soviet Space Program.

Yury Gagarin before a space flight aboard the Vostok spacecraft. April 12, 1961 Credit: RIA Novosti
Yuri Gagarin before a space flight aboard the Vostok 1 spacecraft, April 12th, 1961. Credit: RIA Novosti

Gagarin was further selected to become part of the Sochi Six, an elite group of cosmonauts who formed the backbone of the Vostok program. Due to his training, physical size (as the spacecraft were quite cramped), and favor amongst his peers, Gagarin was selected to be the first human cosmonaut (they had already sent dogs) to make the journey.

On April 12th, 1961, Gagarin was launched aboard the Vostok 1 spacecraft from the Baikonur Cosmodrome, and thus became the fist man to go into space. During reentry, Gagarin claimed to have whistled “The Motherland Hears, The Motherland Knows”, and reportedly said, “I don’t see any God up here” when he reached suborbital altitude (which was falsely attributed).

Afterwards, he toured the world and became a celebrity at home, commemorated with stamps, statues, and the renaming of his ancestral village to Gagarin. The 12th of April is also known as “Cosmonauts Day” in Russia and many former Soviet-states in his honor.

Gagarin died during a routine training exercise in March 27th, 1968. The details of his death were not released until June of 2013, when a declassified report indicated that Gagarin’s death was caused by the error of another pilot.

Alan B. Shepard Jr.:

In addition to being an astronaut and one of the Mercury Seven – the first seven pilots selected by NASA to go into space – Shepard was also the first American man to go into space. He was born November 18th, 1923 in Pebble, California and graduated from the United States Naval Academy with a Bachelor of Science degree. While in the Navy, Shepard became a fighter pilot and served aboard several aircraft carriers in the Mediterranean.

Alan Shepard prepares for his historic flight on May 5, 1961. Credit: NASA
Alan Shepard prepares for his historic flight on May 5, 1961. Credit: NASA

In 1959, he was selected as one of 110 military test pilots to join NASA. As 0ne of the seven Mercury astronauts, Shepard was selected to be the first to go up on May 5th, 1961. Known as the Freedom 7 mission, this flight placed him into a suborbital flight around Earth. Unfortunately, Alan was beaten into space by Soviet cosmonaut Yuri Gagarin by only a few weeks, and hence became the first American to go into space.

Shepard went on to lead other missions, including the Apollo 14 mission – which was the third mission to land on the Moon. While on the lunar surface, he was photographed playing a round of golf and hit two balls across the surface. After leaving NASA, he became a successful businessman. He died of leukemia on July 21st, 1998, five weeks before the death of his wife of 53 years.

Valentina Tereshkova:

Another famous Russian cosmonaut, Tereshkova is also internationally renowned for being the first woman to go into space. Born in the village of Maslennikovo in central Russia on March 6th, 1937, Tereshkova became interested in parachuting from a young age and began training at the local aeroclub.

After Gagarin’s historic flight in 1961, the Soviets hopes to also be the first country to put a woman into space. On 16 February 1962, Valentina Tereshkova was selected to join the female cosmonaut corps, and was selected amongst hundreds to be one of five women who would go into space.

In addition to her expertise in parachuting (which was essential since Vostok pilots were to parachute from the capsule after reentry), her background as a “proletariat”, and the fact that her father was a war hero from the Russo-Finnish War, led to her being selected.

Soviet Cosmonaut Valentina Tereshkova photographed inside the Vostok-6 spacecraft on June 16, 1963. Credit: Roscosmos
Soviet Cosmonaut Valentina Tereshkova photographed inside the Vostok-6 spacecraft on June 16, 1963. Credit: Roscosmos

Her mission, Vostok 6, took place on June 16th, 1963. During her flight, Tereshkova orbited Earth forty-eight times, kept a flight log and took photographs that would prove useful to atmospheric studies. Aside from some nausea (which she later claimed was the result of spoiled food!) she maintained herself for the full three days and parachuted down during re-entry, landing a bit hard and bruising her face.

After returning home, Tereshkova went on to become a cosmonaut engineer and spent the rest of her life in key political positions. She married fellow cosmonaut Andrian Nikolayev and had a daughter. After her flight, the women’s corps was dissolved. Vostok 6 was to be the last of the Vostok flights, and it would be nineteen years before another woman would go into space (see Sally Ride, below).

John Glenn Jr.:

Colonel Glenn, USMC (retired) was a Marine Corps fighter pilot and a test pilot before becoming an astronaut. Due to his experience, he was chosen by NASA to be part of the Mercury Seven in 1959. On February 20, 1962, Glenn flew the Friendship 7 mission, and thus became the first American astronaut to orbit the Earth and the fifth person to go into space.

John Glenn enters his Friendship 7 spacecraft on On Feb. 20, 1962. Credit: NASA
John Glenn enters his Friendship 7 spacecraft on On Feb. 20, 1962. Credit: NASA

For his contributions to spaceflight, John Glenn earned the Space Congressional Medal of Honor. After an extensive career as an astronaut, Glenn retired from NASA on January 16th, 1964, to enter politics. He won his first bid to become a US Senator in 1974, representing Ohio for the Democratic Party, and was reelected numerous times before retiring in January of 1999.

With the death of Scott Carpenter on October 10, 2013, he became the last surviving member of the Mercury Seven. He was also the only astronaut to fly in both the Mercury and Space Shuttle programs – at age 77, he flew as a Payload Specialist on Discovery mission (STS-95). For his history of service, he was awarded the Presidential Medal of Freedom in 2012.

Neil Armstrong:

Neil Armstrong is arguably the most famous astronauts, and indeed one of the most famous people that has ever lived. As commander of the historic Apollo 11 mission, he will forever be remembered as the first man to ever walk on a body other than Earth. Born on August 5th, 1930, in Wapakoneta, Ohio, he graduated from Purdue University and served the National Advisory Committee for Aeronautics High-Speed Flight Station before becoming an astronaut.

Neil A. Armstrong inside the Lunar Module after EVA
Neil A. Armstrong inside the Lunar Module after EVA. Credit: NASA

In accordance with the Holloway Plan, Neil studied at Purdue for two years and then committed to three years of military service as a naval aviator before completing his degree. During this time, he trained in the use of jet aircraft and became a test pilot at Andrews Air Force base, meeting such personalities as Chuck Yeager.

In 1962, when NASA was looking to create a second group of astronauts (after the Mercury 7), Armstrong joined and became part of the Gemini program. He flew two missions, as the command pilot and back-up command pilot for Gemini 8 and Gemini 11 (both in 1966), before being offered a spot with the Apollo program.

On July 16th, 1969, Armstrong went into space aboard the Apollo 11 spacecraft, alongside “Buzz” Aldrin and Michael Collins. On the 20th, after the lunar module set down on the surface,  he became the first person to walk on the Moon.  As he stepped onto the lunar surface, Armstrong uttered the famous words, “That’s one small step for a man, one giant leap for mankind.”

After retiring from NASA in 1971, Armstrong completed his master’s degree in aerospace engineering, became a professor at the University of Cincinnati, and a private businessman.

On Augusts 25th, 2012, he died at the age of 82 after suffering complications from coronary artery bypass surgery. On September 14th, his cremated remains were scattered in the Atlantic Ocean during a burial-at-sea ceremony aboard the USS Philippine Sea.

For his accomplishments, Armstrong was awarded the Presidential Medal of Freedom, the Congressional Space Medal of Honor, and the Congressional Gold Medal in 2009.

James Lovell Jr.:

Lovell was born on March 25th, 1928 in Cleveland, Ohio. Like Shepard, he graduated from the US Naval Academy and served as a pilot before becoming one of the Mercury Seven. Over the course of his career, he flew several missions into space and served in multiple roles. The first was as the pilot of the Apollo 8 command module, which was the first spacecraft to enter lunar orbit.

He also served as backup commander during the Gemini 12 mission, which included a rendezvous with another manned spacecraft. However, he is most famous for his role as commander the Apollo 13 mission, which suffered a critical failure en route to the Moon but was brought back safely due to the efforts of her crew and the ground control team.

Lovell is a recipient of the Congressional Space Medal of Honor and the Presidential Medal of Freedom. He is one of only 24 people to have flown to the Moon, the first of only three people to fly to the Moon twice, and the only one to have flown there twice without making a landing. Lovell was also the first person to fly in space four times.

Original crew photo. Left to right: Lovell, Mattingly, Haise. Credit: NASA
Original crew photo, (left to right) Jim Lovell, Thomas K. Mattingly, and Fred W. Haise. Credit: NASA

Dr. Sally Ride:

Sally Ride became renowned in the 1980s for being one of the first women to go into space. Though Russians had already sent up two female astronauts – Valentina Tereshkova (1963) and Svetlana Savitskaya (1982) – Ride was the first American female astronaut to make the journey. Born on May 26th, 1951, in La Jolla, California, Ride received her doctorate from Stanford University before joining NASA in 1978.

On June 18th, 1983, she became the first American female astronaut to go into space as part of the STS-7 mission that flew aboard the space shuttle Challenger. While in orbit, the five-person crew deployed two communications satellites and Ride became the first woman to use the robot arm (aka. Canadarm).

Her second space flight was in 1984, also on board the Challenger. In 1986, Ride was named to the Rogers Commission, which was charged with investigating the space shuttle Challenger disaster. In 2003, she would serve on the committee investigating the space shuttle Columbia disaster, and was the only person to serve on both.

Sally Ride communicates with ground controllers from the flight deck during the six-day mission in Challenger, 1983. Credit: U.S. National Archives and Records Administration
Sally Ride communicates with ground controllers from the flight deck during STL-7 in 1983. Credit: U.S. National Archives and Records Administration

Ride retired from NASA in 1987 as a professor of physics and continued to teach until her death in 2012 from pancreatic cancer. For her service, she was given numerous awards, which included the National Space Society’s von Braun Award, two NASA Space Flight Medals, and was inducted into the National Women’s Hall of Fame and the Astronaut Hall of Fame.

Chris Hadfield:

Last, but certainly not least, there’s Chris Hadfield, the Canadian astronaut, pilot and engineer who became famous for his rendition of “Space Oddity” while serving as the commander of the International Space Station. Born on August 29th, 1959 in Sarnia, Ontario, Hadfield became interesting in flying at a young age and in becoming an astronaut when he watched the televised Apollo 11 landing at age nine.

After graduating from high school, Hadfield joined the Canadian Armed Forces and spent two years at Royal Roads Military College followed by two years at the Royal Military College, where he received a bachelor’s degree in mechanical engineering in 1982. He then became a fighter pilot with the Royal Canadian Air Force, flying missions for NORAD. He also flew as a test pilot out of Andrews Air Force Base as part of an officer exchange.

In 1992, Hadfield became part of the Canadian Space Agency and was assigned to NASA’s Johnson Space Center in Houston, as a technical and safety specialist for Shuttle Operations Development. He participated in two space missions – STS-74 and STS-100 in 1995 and 2001, respectively – as a Mission Specialist. These missions involved rendezvousing with Mir and the ISS.

Canadian astronaut Chris Hadfield, the first Canadian to serve as commander of the ISS. Credit: CTV
Canadian astronaut Chris Hadfield performing his rendition of “Space Oddity”. Hadfield is the first Canadian to serve as commander of the ISS. Credit: CTV

On December 19th 2012, Hadfield launched in the Soyuz TMA-07M flight for a long duration stay on board the ISS as part of Expedition 35. He became the first Canadian to command the ISS when the crew of Expedition 34 departed in March 2013, and received significant media exposure due to his extensive use of social media to promote space exploration.

Forbes described Hadfield as “perhaps the most social media savvy astronaut ever to leave Earth”. His promotional activities included a collaboration with Ed Robertson of The Barenaked Ladies and the Wexford Gleeks, singing “Is Somebody Singing? (I.S.S.) via Skype. The broadcast of this event was a major media sensation, as was his rendition of David Bowie’s “Space Oddity“, which he sung shortly before departing the station in May 2013.

For his service, Hadfield has received numerous honors, including the Order of Canada in 2014, the Vanier Award in 2001, NASA Exceptional Service Medal in 2002, the Queen’s Golden Jubilee Medal in 2002, and the Queen’s Diamond Jubilee Medal in 2012. He is also the only Canadian to have received both a military and civilian Meritorious Service Cross, the military medal in 2001 and the civilian one in 2013.

Universe Today has interesting articles on Neil Armstrong, “Buzz” Edwin Aldrin, and the enduring legacy of Apollo 11.

If you are looking for more information, you should check out famous aviators and astronauts and astronaut biographies.

Astronomy Cast has an episode on the US space shuttle.

Sources:
NASA: Alan Shepard Jr
NASA: Neil Armstrong
NASA: John Glenn
NASA: James Lovell Jr.
NASA: Sally Ride

How Can We Live on Mars?

The Dragn Crew capsule is more than a modernized Apollo capsule. It will land softly and at least on Earth will be reusable while Musk and SpaceX dream of landing Falcon Crew on Mars. (Photo Credits: SpaceX)

Why live on Earth when you can live on Mars? Well, strictly speaking, you can’t. Mars is a completely hostile environment to human life, combining extreme cold with an unbreathable atmosphere and intense radiation. And while it is understood that the planet once had an atmosphere and lots of water, that was billions of years ago!

And yet, if we want to expand into the Solar System, we’ll need to learn how to live on other planets. And Mars is prime real-estate, compared to a lot of other bodies. So despite it being a challenge, given the right methods and technology, it is possible we could one day live on Mars. Here’s how we’ll do it.

Reasons To Go:

Let’s face it, humanity wants (and needs) to go Mars, and for several reasons.  For one, there’s the spirit of exploration, setting foot on a new world and exploring the next great frontier – like the Apollo astronauts did in the late 60s and early 70s.

Artist illustration of a Mars Colony. Image credit: NASA
Artist illustration of a Mars Colony. Image credit: NASA

We also need to go there if we want to create a backup location for humanity, in the event that life on Earth becomes untenable due to things like Climate Change. We could also go there to search for additional resources like water, precious metals, or additional croplands in case we can no longer feed ourselves.

In that respect, Mars is the next, natural destination. There’s also a little local support, as Mars does provide us some raw materials. The regolith, the material which covers the surface, could be used to make concrete, and there are cave systems which could be converted into underground habitats to protect citizens from the radiation.

Elon Musk has stated that the goal of SpaceX is to help humans get to Mars, and they’re designing rockets, landers and equipment to support that. Musk would like to build a Mars colony with about 1 million people. Which is a good choice, as its probably the second most habitable place in our Solar System. Real estate should be pretty cheap, but the commute is a bit much.

And then there’s the great vistas to think about. Mars is beautiful, after a fashion. It looks like a nice desert planet with winds, clouds, and ancient river beds. But maybe, just maybe, the best reason to go there is because it’s hard! There’s something to be said about setting a goal and achieving it, especially when it requires so much hard work and sacrifice.

Reasons NOT To Go:

Yeah, Mars is pretty great… if you’re not made of meat and don’t need to breathe oxygen. Otherwise, it’s incredibly hostile. It’s not much more habitable than the cold vacuum of space. First, there’s no air on Mars. So if you were dropped on the surface, the view would be spectacular. Then you’d quickly pass out, and expire a couple minutes later from a lack of oxygen.

There’s also virtually no air pressure, and temperatures are incredibly cold. And of course, there’s the constant radiation streaming from space. You also might want to note that the soil is toxic, so using it for planting would first require that it be put through a decontamination process.

A post-processed mosaic of MSL Mastcam images from Sol 582 (NASA/JPL-Caltech/MSSS. Edit by Jason Major)
Afternoon on Mars (MSL Mastcam mosaic)(NASA/JPL-Caltech/MSSS. Edit by Jason Major)

Assuming we can deal with those issues, there’s also the major problem of having limited access to spare parts and medical supplies. You can’t just go down to the store when you’re on Mars if your kidney gives out or if your sonic screwdriver breaks.

There will need to be a constant stream of supplies coming from Earth until the Martian economy is built up enough to support itself. And shipping from Earth will be very expensive, which will mean long period between supply drops.

One more big unknown is what the low gravity will do to the human body over months and years. At 40% of Earth normal, the long-term effects are not something we currently have any information on. Will it shorten our lifespan or lengthen it? We just don’t know.

There’s a long list of these types of problems. If we intend to live on Mars, and stay there permanently, we’ll be leaning pretty hard on our technology to keep us alive, never mind making us comfortable!

Possible Solutions:

In order to survive the lack of air pressure and the cold, humans will need pressurized and heated habitats. Martians, the terrestrial kind, will also need a spacesuit whenever they go outside. Every hour they spend outside will add to their radiation exposure, not to mention all the complications that exposure to radiation brings.

Artist's concept of a habitat for a Mars colony. Credit: NASA
Artist’s concept of a habitat for a Mars colony. Credit: NASA

For the long term, we’ll need to figure out how to extract water from underground supplies, and use that to generate breathable air and rocket fuel. And once we’ve reduced the risk of suffocation or dying of dehydration, we’ll need to consider food sources, as we’ll be outside the delivery area of everyone except Planet Express. Care packages could be shipped up from Earth, but that’s going to come with a hefty price tag.

We’ll need to produce our own food too, since we can’t possible hope to ship it all in on a regular basis. Interestingly, although toxic, Martian soil can be used to grow plants once you supplement it and remove some of the harsher chemicals. NASA’s extensive experience in hydroponics will help.

To thrive on Mars, the brave adventurers may want to change themselves, or possibly their offspring. This could lead to genetic engineering to help future generations adapt to the low gravity, higher radiation and lower air pressure. And why stop at humans? Human colonists could also adapt their plants and animals to live there as well.

Finally, to take things to the next level, humanity could make a few planetary renovations. Basically, we could change Mars itself through the process of terraforming. To do this, we’ll need to release megatons of greenhouse gasses to warm the planet, unleashing the frozen water reserves. Perhaps we’ll crash a few hundred comets into the planet to deliver water and other chemicals too.

An artist's conception of future Mars astronauts. Credit: NASA/JPL-Caltech
An artist’s conception of future Mars astronauts. Credit: NASA/JPL-Caltech

This might take thousands, or even millions of years. And the price tag will be, for lack of a better word, astronomical! Still, the technology required to do all this is within our current means, and the process could restore Mars to a place where we could live on it even without a spacesuit.

And even though we may not have all the particulars worked out just yet, there is something to be said about a challenge. As history has shown, there is little better than a seemingly insurmountable challenge to bring out the best in all of us, and to make what seems like an impossible dream a reality.

To quote the late, great John F. Kennedy, who addressed the people of the United States back when they was embarking on a similarly difficult mission:

We choose to go to the Moon! … We choose to go to the Moon in this decade and do the other things, not because they are easy, but because they are hard; because that goal will serve to organize and measure the best of our energies and skills, because that challenge is one that we are willing to accept, one we are unwilling to postpone, and one we intend to win

What do you think? Would you be part of the Mars terraforming expedition? Tell us in the comments below.

We have written many interesting articles about Mars here at Universe Today. Here’s How Do We Colonize Mars?, Mars Colony Will Have to Wait, Solar Power is Best for Mars Colonies, and Elon Musk is Sending Humans to Mars in 2024.

For more information, check out NASA’s Journey to Mars, and NASA Quest’s Mars Colony Project.

Astronomy Cast also has episodes on the subject, like Episode 52: Mars, and Episode 95: Humans to Mars, Part 2: Colonists.

What are the Longest Rivers In the World?

The Nile River and Delta, viewed at night by the Expedition 25 crew on Oct. 28, 2010. Credit: NASA

There are many long rivers in the world, but which ones are the longest? Naturally, there is a disagreement over the answer to this question. While The Nile has traditionally been considered to be longest in the world, the Amazon has some pretty fierce defenders as well. The debate arises over the difficulty in determining the full extent of a river, and also because measurements differ according to who measured them.

Another source of disagreement is the role played by tributaries, with some scientists arguing for their inclusion while others leave them out. Luckily, when determining length, several major rivers stand out from the crowd. Here are a few, and the reasons for why they made the list:

Definition:
There are many factors in determining the precise length of a river. These include the source, the identification (or the definition) of the river’s mouth, and the scale of measurement when determining the river length between source and mouth. As a result, the length measurements of many rivers are only approximations.

A river’s “true source” is considered to be the source of whichever tributary is farthest from the mouth, but this tributary may or may not have the same name as the main stem river. Furthermore, it is sometimes hard to state exactly where a river begins – especially rivers that are formed by ephemeral streams, swamps, or changing lakes.

Nile Delta from space  by the MODIS sensor on the Terra satellite. Credit: Jacques Descloitres/NASA/GSFC
Nile Delta from space by the MODIS sensor on the Terra satellite. Credit: Jacques Descloitres/NASA/GSFC

The mouth of a river is hard to determine in cases where the river has a large estuary that gradually widens and opens into the ocean. Some rivers do not have a mouth, and instead dwindle to very low water volume and disappear underground. A river may also have multiple channels, or anabranches, and it may not be clear how to measure the length through a lake.

Seasonal and annual changes may alter rivers as well, not to mention cycles of erosion and flooding, dams, levees, and geological engineering. In addition, the length of meanders can change significantly over time when a new channel cuts across a narrow strip of land, bypassing a large river bend.

The Nile:
The Nile River, located in Africa, is listed as being 6,853 kilometers (4,258 miles) long, and is hence commonly considered to be the longest river in the world. This river and its water resources are shared by eleven countries – Tanzania, Uganda, Rwanda, Burundi, Congo-Kinshasa, Kenya, Ethiopia, Eritrea, South Sudan, the Sudan and Egypt.

In ancient times, its existence was closely tied to the rise of civilization in the Near East, being the main source of irrigation and fresh water for multiple Egyptian dynasties. Today, it remains the primary water source for both Egypt and the Sudan.

Lake Victoria, as viewed by the Moderate Resolution Imaging Spectroradiometer (MODIS) o
Lake Victoria, as viewed by the Moderate Resolution Imaging Spectroradiometer (MODIS) on the Terra satellite. Credit: NASA/EO

The source of the Nile is traditionally considered to be Lake Victoria, but Victoria itself has feeder rivers of considerable size. It’s two main tributaries,  are the White Nile and Blue Nile. The former is considered to be the headwaters and primary stream of the Nile itself, but the latter is the primary source of water and silt.

The Amazon:
The Amazon River is the longest river in South America, and the largest river in the world in terms of water discharge. This river has a series of major river systems in Colombia, Ecuador and Peru. At roughly 6,437 km (4,000 mi) in length, it is also considered to be the second-longest river in the world.

However, Brazilian scientists claimed to have found the most distant source of the Amazon in the Andes. This source is apparently a glacial stream emanating from the peak of Nevado Mismi in the Peruvian Andes, roughly 700 km (430 mi) southeast of Lima. If this is correct, then the Amazon is in fact 6.800 kilometers (4,225 miles) long, making it the world’s longest.

Satellite image of a flooded section of the Amazon river. Credit: NASA
Satellite image of a flooded section of the Amazon river. Credit: NASA

The Yangtze:
The third longest river in the world is the Yangtze – or as it’s known in China, the Chang Jiang River. The Yangtze is 6,380 kilometers (3,964 miles) in length, making it the longest river in Asia. It originates from the glaciers of the Qinghai-Tibet Plateau in Qinghai province, flows eastward across southwest, central and eastern China, and then empties into the East China Sea at Shanghai.

The Yangtze River has played a large role in the history, culture and economy of China, and continues to do so to this day. In addition to running through multiple ecosystems in China, its existence was also pivotal to human settlement, the development of agriculture, and the rise of civilization in East Asia.

Today, the prosperous Yangtze River Delta generates as much as 20% of China’s Gross Domestic Product (GDP), and the Three Gorges Dam – located on the Yangtze River near the town of Sandouping – is the largest hydro-electric power station in the world. Because of the impact of human infrastructure, some sections of the river are now protected wildlife preserves.

The first turn of the Yangtze at Shigu (??) in Yunnan Province, where the river turns 180 degrees from south- to north-bound. Credit: peace-on-earth.org/Jialiang Gao
The first turn of the Yangtze in Yunnan Province, where the river turns 180 degrees from south- to north-bound. Credit: peace-on-earth.org/Jialiang Gao

The Mississippi-Missouri-Jefferson:
At 6,275 kilometers (3,902 miles) the Mississippi-Missouri-Jefferson River system is the fourth longest in the world and the longest river in the United States. Although each river separately would not be in the top five, these three rivers are grouped together into one because the Missouri River meets the Mississippi near the city of St. Louis, while the Missouri connects to the Jefferson river in Montana.

However, the main thrust of the Mississippi runs north-south, rising in northern Minnesota and meandering slowly southwards for 3,730 km (2,320 miles) before reaching the Mississippi River Delta at the Gulf of Mexico.

With its many tributaries, the Mississippi’s watershed drains all or parts of 31 U.S. states and 2 Canadian provinces between the Rocky and Appalachian Mountains. It also borders and/or passes through the states of Minnesota, Wisconsin, Iowa, Illinois, Missouri, Kentucky, Tennessee, Arkansas, Mississippi, and Louisiana.

The Mississippi River and its tributaries have a long history of significance to Native American cultures. Many nations lived along its river banks, most of which were hunters and gathers who used the river as a source of water and for transportation. But for some – such as the Mound builders – the river was key to the formation of prolific agricultural societies.

The Mississippi River Delta. Credit: ESA
The Mississippi River Delta shown draining into the Gulf of Mexico from space. Credit: ESA

The arrival of Europeans in the 1500s changed the native way of life drastically as first explorers, then settlers, ventured into the basin in increasing numbers and colonized the area. Initially a barrier between New Spain, New France, and the Thirteen Colonies, it grew to become a major artery of transportation and western expansion for the United States by the 19th century.

The Yellow River:
Huang He, which is also known as the Yellow River because of the color of its silt, is the third longest river in Asia and the sixth longest river in the world. Located in China and measuring 5,464 kilometers (3,395 miles) in length, the river originates the Bayan Har Mountains in Qinghai province, western China. It then flows through nine provinces before emptying into the Bohai Sea near the city of Dongying in Shandong province.

The Yellow River is also known as “the cradle of Chinese civilization” because of the pivotal role it played in the development of Chinese culture. Much like the Yangtze, the presence of human settlements dates back to the Paleolithic Era, and the fertile flood basins contributed to the rise of agricultural communities which eventually integrated with the less-developed settlements along the southern Yangtze.

Before modern dams became an option, the Yellow River was extremely prone to flooding. In the roughly 2,540 years before 1946 CE, the Yellow River is believed to have flooded 1,593 times and shifted its course many times (sometimes severely). These floods include some of the deadliest natural disasters ever recorded, thus earning the river the nicknames “China’s Sorrow” and “Scourge of the Sons of Han.”

China's Yellow River Delta. Credit: NASA/EO
China’s Yellow River Delta, as seen from space in 2009. Credit: NASA/EO

The Congo-Chambeshi:
At 4,700 km (2,920 miles), the Congo River (aka. Zaire River) in Africa is the ninth longest river in the world. Interestingly enough, it is also its deepest – with measured depths exceeding 220 m (720 ft) – and the second largest river in the world in terms of discharge (after the Amazon).

Originating deep in the eastern region of the Democratic Republic of Congo (DRC, formerly Zaire), the Congo is fed by the Lualaba river, which is itself fed by the Luyua and Luapula rivers that are connected to Lake Mweru and Lake Bangwelo. The river then runs west and constitutes much of the border between the DRC and its eastern neighbor, the Republic of Congo.

The Congo river gets its name from the Kingdom of Kongo which was situated on the left banks of the river estuary. The kingdom is in turn named for its Bantu population, which were described in 17th century European records as Esikongo. The name Zaire is from a Portuguese adaptation of a Kikongo word nzere (“river”), a truncation of nzadi o nzere (“river swallowing rivers”).

Envisat image, acquired on 14 January 2009, features the Congo River Basin’s rainforests. Credit: ESA
The Congo River and rainforest, as acquired on Jan 14th, 2009 by the ESA’s Envisat satellite. Credit: ESA

The river was known as Zaire during the 16th and 17th centuries, but the word Congo has since replaced Zaire gradually in English usage. However, references to Zahir or Zaire, as the name used by the natives (i.e. derived from Portuguese usage), has remained common throughout this same period.

All the states that have existed in the region since attaining their independence from Belgium in 1960 – the DRC (which was named Zaire from 1971-1997) and the Republic of Congo – in turn derive their names from the river.

And those are just some of the longest rivers in the world! If you’re interested, Universe Today has many articles on rivers, such as what is the world’s widest river?

For more information, check out longest rivers in the world and Amazon longer than the Nile. Astronomy Cast also has an episode on Earth which addresses rivers.

Sources:
Google Book: Seven Natural Wonders of Central and South America
The Nature Conservancy
About.com: Geography
How Stuff Works
About.com – Longest Rivers
Louisiana State University
New World Encyclopedia

What is a Hunter’s Moon?

A full moon in October is known as a "Hunters Moon". Credit: David Haworth/stargazing.net

If you live in the northern hemisphere, than stargazing during the early autumn months can a bit tricky. During certain times in these seasons, the stars, planets and Milky Way will be obscured by the presence of some very beautiful full moons. But if you’re a fan of moongazing, then you’re in luck.

Because it is also around this time (the month of October) that people looking to the night sky will have the chance to see what is known as a Hunter’s Moon. A slight variation on a full moon, the Hunter’s Moon has long been regarded as a significant event in traditional folklore, and a subject of interest for astronomers.

Definition:

Also known as a sanguine or “blood” moon, the term “Hunters Moon” is used traditionally to refer to a full moon that appears during the month of October. It is preceded by the appearance of a “Harvest Moon”, which is the full moon closest to the autumnal equinox (which falls on the 22nd or 23rd of September).

The Hunter’s Moon typically appears in October, except once every four years when it doesn’t appear until November. The name dates back to the First Nations of North America. It is so-called because it was during the month of October, when the deers had fatted themselves over the course of the summer, that hunters tracked and killed prey by autumn moonlight, stockpiling food for the coming winter.

Full Moon Rising Over Northwest Georgia on June 22nd, 2013. Credit and copyright: Stephen Rahn.
Full Moon Rising Over Northwest Georgia on June 22nd, 2013. Credit and copyright: Stephen Rahn.

Characteristics:

Although typically the Moon rises 50 minutes later each day, things are different for the Hunter’s Moon (as well as the Harvest Moon). Both of these moons usually rise 30 minutes later on each successive night, which means that sunset and moonrise are not far apart.

This means there is prolonged periods of light during this time of the the year, which is the reason why these moons have traditionally been used by hunters and farmers to finish their work.

This difference between the timing of the sunset and moonrise is due to its orbit, meaning that the angle the Moon makes with the horizon is narrower during this time of year. The Hunter’s Moon is generally not bigger or brighter than any of the other full moons. Thus, the only difference between it and other full moons is the that the time between sunset and moonrise is shorter.

History of Observation:

Because the approach of winter signaled the possibility of going hungry in pre-Industrial times, the Hunter’s Moon was generally accorded with special honor, historically serving as an important feast day in both northern Europe and among many Native American tribes.

Traditionally, Native American hunters used the full moon of October to stalk deer and to spot foxes at night as they prepared for the coming winter. Because the fields were traditionally reaped in late September or early October, hunters could easily see foxes and other animals that came out to glean from the fallen grains.

The Hunter’s Moon is accorded similar significance in Europe, where it was also seen as a prime time to hunt during the post-harvest, pre-winter period when conditions were optimal for spotting prey. However, the term did not enter into usage for Europeans until after they made contact with Indigenous Americans and began colonizing North America.

The first recorded mentions of a “Hunter’s Moon” began in the early 18th century. The entry in the Oxford English Dictionary for “Hunter’s Moon” cites a 1710 edition of The British Apollo, where the term is attributed to “the country people”. The names are now referred to regularly by American sources, where they are often popularly attributed to “the Native Americans”.

In India, the harvest festival of Sharad Purnima, which marks the end of the monsoon season, is celebrated on the full moon day of the lunar month of Ashvin (September-October). There is a traditional celebration of the moon during this time that is known as the “Kaumudi” celebration – which translated, means “moonlight”.

The harvest festival of Shrad Purnima is celebrated on the full moon day of the Hindu lunar month of Ashvin. Credit: http://dfwhindutemple.org
The harvest festival of Shrad Purnima is celebrated on the full moon day of the Hindu lunar month of Ashvin. Credit: dfwhindutemple.org

Interesting Facts:

Sometimes, the Harvest Moon is mistaken for the Hunter’s Moon because once every four years or so the Harvest Moon is in October instead of September.  When that happens, the Hunter’s Moon is in November. Traditionally, each month’s full moon has been given a name, although these names differ according to the source.

Other full moons of interest include the Wolf Moon in January, the Strawberry Moon in June, the Sturgeon Moon in August, the Cold Moon in December, and the Pink Moon in April. All of the full moons have different characteristics due to the location of the ecliptic – i.e. the path of the Sun – at the time of each.

The Hunter’s Moon is also associated with feasting. In the Northern Hemisphere, some Native American tribes and some places in Western Europe held a feast day. This feast day, the Feast of the Hunter’s Moon, was not been held since the 1700’s. However, the Feast of the Hunters’ Moon is a yearly festival in Lafayette, Indiana, which has been held in late September or early October every year since 1968.

We have many interesting articles about the moon here at Universe Today. For example, here are some about the red moon and a rundown of what a full moon is all about.

For more information, check out the page on the Hunter’s Moon at NightSkyInfo, and full moon names and meanings, courtesy of the Farmer’s Almanac.

Astronomy Cast has an interesting episode on the subject – Episode 113: The Moon: Part I

Sources:

How Do We Settle on Mars?

Artist's illustration of a SpaceX Starship lands on Mars. Credit: SpaceX

Welcome back to our series on Settling the Solar System! Today, we take a look at that cold and dry world known as “Earth’s Twin”. I’m talking about Mars. Enjoy!

Mars. It’s a pretty unforgiving place. On this dry, desiccated world, the average surface temperature is -55 °C (-67 °F). And at the poles, temperatures can reach as low as  -153 °C (243 °F). Much of that has to do with its thin atmosphere, which is too thin to retain heat (not to mention breathe). So why then is the idea of colonizing Mars so intriguing to us?

Well, there are a number of reasons, which include the similarities between our two planets, the availability of water, the prospects for generating food, oxygen, and building materials on-site. And there are even long-term benefits to using Mars as a source of raw materials and terraforming it into a liveable environment. Let’s go over them one by one…

Examples in Fiction:

The idea of exploring and settling Mars has been explored in fiction for over a century. Most of the earliest depiction of Mars in fiction involved a planet with canals, vegetation, and indigenous life – owing to the observations of the astronomers like Giovanni Schiaparelli and Percival Lowell.

However, by the latter half of the 20th century (thanks in large part to the Mariner 4 missions and scientists learning of the true conditions on Mars) fictional accounts moved away from the idea of a Martian civilization and began to deal with humans eventually colonizing and transforming the environment to suit their needs.

Artist impression of a Mars settlement with cutaway view. Credit: NASA Ames Research Center
Artist impression of a Mars settlement with cutaway view. Credit: NASA Ames Research Center

This shift is perhaps best illustrated by Ray Bradbury’s The Martian Chronicles (published in 1950). A series of short stories that take place predominantly on Mars, the collection begins with stories about a Martian civilization that begins to encounter human explorers. The stories then transition to ones that deal with human settlements on the planet, the genocide of the Martians, and Earth eventually experiencing nuclear war.

During the 1950s, many classic science fiction authors wrote about colonizing Mars. These included Arthur C. Clarke and his 1951 story The Sands of Mars, which is told from the point of view of a human reporter who travels to Mars to write about human colonists. While attempting to make a life for themselves on a desert planet, they discover that Mars has native life forms.

In 1952, Isaac Asimov released The Martian Way, a story that deals with the conflict between Earth and Mars colonists. The latter manage to survive by salvaging space junk and are forced to travel to Saturn to harvest ice when Earth enforces an embargo on their planet.

Robert A. Heinlein’s seminal novel Stranger in a Strange Land (1961) tells the story of a human who was raised on Mars by the native Martians and then travels to Earth as a young adult. His contact with humans proves to have a profound effect on Earth’s culture, and calls into questions many of the social mores and accepted norms of Heinlein’s time.

Artist's concept of possible exploration of the surface of Mars. Credit: NASA Ames Research Center
Artist’s concept of possible exploration of the surface of Mars. Credit: NASA Ames Research Center

Philip K. Dick’s fiction also features Mars often, in every case being a dry, empty land with no native inhabitants. In his works Martian Time Slip (1964), and The Three Stigmata of Palmer Eldritch (1965), life on Mars is presented as difficult, consisting of isolated communities who do not want to live there.

In Do Androids Dream of Electric Sheep? (1968), most of humanity has left Earth after a nuclear war and now live in “the colonies” on Mars. Androids (Replicants) escaping illegally to come back to Earth claim that they have left because “nobody should have to live there. It wasn’t conceived for habitation, at least not within the last billion years. It’s so old. You feel it in the stones, the terrible old age”.

Kim Stanley Robinson’s Mars trilogy (published between 1992–1996), Mars is colonized and then terraformed over the course of many centuries. Ben Bova’s Grand Tour series – which deals with the colonization of the Solar System – also includes a novel titled Mars (1992). In this novel, explorers travel to Mars – locations including Mt. Olympus and Valles Marineris – to determine is Mars is worth colonizing.

Alastair Reynolds’ short story “The Great Wall of Mars” (2000) takes place in a future where the most technologically advanced humans are based on Mars and embroiled in an interplanetary war with a faction that takes issue with their experiments in human neurology.

Artist's impression of the terraforming of Mars, from its current state to a livable world. Credit: Daein Ballard
Artist’s impression of the terraforming of Mars, from its current state to a livable world. Credit: Daein Ballard

In Hannu Rajaniemi’s The Quantum Thief (2010), we get a glimpse of Mars in the far future. The story centers on the city of Oubliette, which moves across the face of the planet. Andry Weir’s The Martian (2011) takes place in the near future, where an astronaut is stranded on Mars and forced to survive until a rescue party arrives.

Kim Stanley Robinson’s 2312 (2012) takes place in a future where humanity has colonized much of the Solar System. Mars is mentioned in the course of the story as a world that has been settled and terraformed (which involved lasers cutting canals similar to what Schiaparelli described) and now has oceans covering much of its surface.

Proposed Methods:

NASA’s proposed manned mission to Mars – which is slated to take place during the 2030s using the Orion Multi-Purpose Crew Vehicle (MPCV) and the Space Launch System (SLS) – is not the only proposal to send humans to the Red Planet. In addition to other federal space agencies, there are also plans by private corporations and non-profits, some of which are far more ambitious than mere exploration.

The European Space Agency (ESA) has long-term plans to send humans, though they have yet to build a manned spacecraft. Roscosmos, the Russian Federal Space Agency, is also planning a manned Mars mission, with simulations (called Mars-500) having been completed in Russia back in 2011. The ESA is currently participating in these simulations as well.

In 2012, a group of Dutch entrepreneurs revealed plans for a crowdfunded campaign to establish a human Mars base, beginning in 2023. Known as Mars One, the plan calls for a series of one-way missions to establish a permanent and expanding colony on Mars, which would be financed with the help of media participation.

Mars-manned-mission vehicle (NASA Human Exploration of Mars Design Reference Architecture 5.0) feb 2009. Credit: NASA
Mars-manned-mission vehicle (NASA Human Exploration of Mars Design Reference Architecture 5.0) Feb 2009. Credit: NASA

Other details of the MarsOne plan include sending a telecom orbiter by 2018, a rover in 2020, and the base components and its settlers by 2023. The base would be powered by 3,000 square meters of solar panels, and the SpaceX Falcon 9 Heavy rocket would be used to launch the hardware. The first crew of 4 astronauts would land on Mars in 2025; then, every two years, a new crew of 4 astronauts would arrive.

On December 2nd, 2014, NASA’s Advanced Human Exploration Systems and Operations Mission Director Jason Crusan and Deputy Associate Administrator for Programs James Reuther announced tentative support for the Boeing “Affordable Mars Mission Design.” Currently planned for the 2030s, the mission profile includes plans for radiation shielding, centrifugal artificial gravity, in-transit consumable resupply, and a return-lander.

SpaceX and Tesla CEO Elon Musk also announced plans to establish a colony on Mars with a population of 80,000 people. Intrinsic to this plan is the development of the Mars Colonial Transporter (MCT), a spaceflight system that would rely on reusable rocket engines, launch vehicles, and space capsules to transport humans to Mars and return to Earth.

As of 2014, SpaceX has begun developing the large Raptor rocket engine for the Mars Colonial Transporter, and a successful test was announced in September of 2016. In January 2015, Musk said that he hoped to release details of the “completely new architecture” for the Mars transport system in late 2015.

In June 2016, Musk stated in the first unmanned flight of the Mars transport spacecraft would take place in 2022, followed by the first manned MCT Mars flight departing in 2024. In September 2016, during the 2016 International Astronautical Congress, Musk revealed further details of his plan, which included the design for an Interplanetary Transport System (ITS) and estimated costs.

There may come a day when, after generations of terraforming and numerous waves of colonists, that Mars will begin to have a viable economy as well. This could take the form of mineral deposits being discovered and then sent back to Earth for sale. Launching precious metals, like platinum, off the surface of Mars would be relatively inexpensive thanks to its lower gravity.

But according to Musk, the most likely scenario (at least for the foreseeable future) would involve an economy based on real estate. With human populations exploding all over Earth, a new destination that offers plenty of room to expand is going to look like a good investment.

And once transportation issues are worked out, savvy investors are likely to start buying up land. Plus, there is likely to be a market for scientific research on Mars for centuries to come. Who knows what we might find once planetary surveys really start to open up!

Over time, many or all of the difficulties in living on Mars could be overcome through the application of geoengineering (aka. terraforming). Using organisms like cyanobacteria and phytoplankton, colonists could gradually convert much of the CO² in the atmosphere into breathable oxygen.

In addition, it is estimated that there is a significant amount of carbon dioxide (CO²) in the form of dry ice at the Martian south pole, not to mention absorbed by in the planet’s regolith (soil). If the temperature of the planet were raised, this ice would sublimate into gas and increase atmospheric pressure. Although it would still not be breathable by humans, it would be sufficient enough to eliminate the need for pressure suits.

A possible way of doing this is by deliberately triggering a greenhouse effect on the planet. This could be done by importing ammonia ice from the atmospheres of other planets in our Solar System. Because ammonia (NH³) is mostly nitrogen by weight, it could also supply the buffer gas needed for a breathable atmosphere – much as it does here on Earth.

Similarly, it would be possible to trigger a greenhouse effect by importing hydrocarbons like methane – which is common in Titan’s atmosphere and on its surface. This methane could be vented into the atmosphere where it would act to compound the greenhouse effect.

Zubrin and Chris McKay, an astrobiologist with NASA’s Ames Research center, have also suggested creating facilities on the surface that could pump greenhouse gases into the atmosphere, thus triggering global warming (much as they do here on Earth).

Other possibilities exist as well, ranging from orbital mirrors that would heat the surface to deliberately impacting the surface with comets. But regardless of the method, possibilities exist for transforming Mars’ environment that could make it more suitable for humans in the long run – many of which we are currently doing right here on Earth (with less positive results).

Another proposed solution is building habitats underground. By building a series of tunnels that connect between subterranean habitats, settlers could forgo the need for oxygen tanks and pressure suits when they are away from home.

Additionally, it would provide protection against radiation exposure. Based on data obtained by the Mars Reconnaissance Orbiter, it is also speculated that habitable environments exist underground, making it an even more attractive option.

Potential Benefits:

As already mentioned, there are many interesting similarities between Earth and Mars that make it a viable option for colonization. For starters, Mars and Earth have very similar lengths of days. A Martian day is 24 hours and 39 minutes, which means that plants and animals – not to mention human colonists – would find that familiar.

This diagram shows the distances of the planets in the Solar System (upper row) and in the Gliese 581 system (lower row), from their respective stars (left). The habitable zone is indicated as the blue area, showing that Gliese 581 d is located inside the habitable zone around its low-mass red star. Based on a diagram by Franck Selsis, Univ. of Bordeaux. Credit: ESO
Diagram showing the habitable zones of the Solar System (upper row) and the Gliese 581 system (lower row). Based on a diagram by Franck Selsis, Univ. of Bordeaux. Credit: ESO

Mars also has an axial tilt that is very similar to Earth’s, which means it has the same basic seasonal patterns as our planet (albeit for longer periods of time). Basically, when one hemisphere is pointed towards the Sun, it experiences summer while the other experiences winter – complete with warmer temperatures and longer days.

This too would work well when it comes to growing seasons and would provide colonists with a comforting sense of familiarity and a way of measuring out the year. Much like farmers here on Earth, native Martians would experience a “growing season”, a “harvest”, and would be able to hold annual festivities to mark the changing of the seasons.

Also, much like Earth, Mars exists within our Sun’s habitable zone (aka. “Goldilocks zone“), though it is slightly towards its outer edge. Venus is similarly located within this zone, but its location on the inner edge (combined with its thick atmosphere) has led to it becoming the hottest planet in the Solar System. That, combined with its sulfuric acid rains makes Mars a much more attractive option.

Additionally, Mars is closer to Earth than the other Solar planets – except for Venus, but we already covered why it’s not a very good option! This would make the process of colonizing it easier. In fact, every few years when the Earth and Mars are at opposition – i.e. when they are closest to each other – the distance varies, making certain “launch windows” ideal for sending colonists.

For example, on April 8th, 2014, Earth and Mars were 92.4 million km (57.4 million miles) apart at opposition. On May 22nd, 2016, they will be 75.3 million km (46.8 million miles) apart, and by July 27th of 2018, a meager 57.6 million km (35.8 million miles) will separate our two worlds. During these windows, getting to Mars would be a matter of months rather than years.

Also, Mars has vast reserves of water in the form of ice. Most of this water ice is located in the polar regions, but surveys of Martian meteorites have suggested that much of it may also be locked away beneath the surface. This water could be extracted and purified for human consumption easily enough.

In his book, The Case for Mars, Robert Zubrin also explains how future human colonists might be able to live off the land when traveling to Mars, and eventually colonize it. Instead of bringing all their supplies from Earth – like the inhabitants of the International Space Station – future colonists would be able to make their own air, water, and even fuel by splitting Martian water into oxygen and hydrogen.

Global map of Water ice on Mars
New estimates of water ice on Mars suggest there may be large reservoirs of underground ice at non-polar latitudes. Credit: Feldman et al., 2011

Preliminary experiments have shown that Mars soil could be baked into bricks to create protective structures, which would reduce the amount of material that needs to be shipped to the surface. Earth plants could eventually be grown in Martian soil too, assuming they get enough sunlight and carbon dioxide. Over time, planting on the native soil could also help to create a breathable atmosphere.

Challenges:

Despite the aforementioned benefits, there are also some rather monumental challenges to colonizing the Red Planet. For starters, there is the matter of the average surface temperature, which is anything but hospitable. While temperatures around the equator at midday can reach a balmy 20 °C, at the Curiosity site – the Gale Crater, which is close to the equator – typical nighttime temperatures are as low as -70 °C.

The gravity on Mars is also only about 40% of what we experience on Earth’s, which would make adjusting to it quite difficult. According to a NASA report, the effects of zero-gravity on the human body are quite profound, with a loss of up to 5% muscle mass a week and 1% of bone density a month.

Naturally, these losses would be lower on the surface of Mars, where there is at least some gravity. But permanent settlers would still have to contend with the problems of muscle degeneration and osteoporosis in the long run.

 The Biosphere 2 project is an attempt to simulate Mars-like conditions on Earth. Credit: Science Photo Library
The Biosphere 2 project is an attempt to simulate Mars-like conditions on Earth. Credit: Science Photo Library

And then there’s the atmosphere, which is unbreathable. About 95% of the planet’s atmosphere is carbon dioxide, which means that in addition to producing breathable air for their habitats, settlers would also not be able to go outside without a pressure suit and bottled oxygen.

Mars also has no global magnetic field comparable to Earth’s geomagnetic field. Combined with a thin atmosphere, this means that a significant amount of ionizing radiation is able to reach the Martian surface.

Thanks to measurements taken by the Mars Odyssey spacecraft’s Mars Radiation Environment Experiment (MARIE), scientists learned that radiation levels in orbit above Mars are 2.5 times higher than at the International Space Station. Levels on the surface would be lower, but would still be higher than human beings are accustomed to.

In fact, a recent paper submitted by a group of MIT researchers – which analyzed the Mars One plan to colonize the planet beginning in 2020 – concluded that the first astronaut would suffocate after 68 days, while the others would die from a combination of starvation, dehydration, or incineration in an oxygen-rich atmosphere.

Artist's concept of a Martian astronaut standing outside the Mars One habitat. Credit: Bryan Versteeg/Mars One
Artist’s concept of a Martian astronaut standing outside the Mars One habitat. Credit: Bryan Versteeg/Mars One

In short, the challenges to creating a permanent settlement on Mars are numerous, but not necessarily insurmountable. And if we do decide, as individuals and as a species, that Mars is to become a second home for humanity, we will no doubt find creative ways to address them all.

Who knows? Someday, perhaps even within our own lifetimes, there could be real Martians. And they would be us!

Universe Today has many interesting articles about the possibility of humans living on Mars. Here’s a great article by Nancy Atkinson about the possibility of a one-way, one-person trip to Mars

What about using microbes to help colonize mars? And if you want to know the distances between Earth and Mars, check it out here.

For more information, check out Mars colonies coming soon, Hubblesite’s News Releases about Mars, and NASA’s Quick Facts

The Mars Society is working to try and colonize Mars. And Red Colony is a great resource of articles about colonizing Mars.

Finally, if you’d like to learn more about Mars in general, we have done several podcast episodes about the Red Planet at Astronomy Cast. Episode 52: Mars, Episode 91: The Search for Water on Mars, and Episode 94: Humans to Mars – Part 1, Scientists.

Reference:
NASA Quest: Possibility of colonizing Mars