Here They are! New Juno Pictures of the Great Red Spot

Jupiter's Great Red Spot, as imaged by the Juno spacecraft's JunoCam at a distance of just 9,000 km (5,600 mi) from the atmosphere. Credit : NASA/SwRI/MSSS/TSmith

Earlier this week, on Monday, July 10th, the Juno mission accomplished an historic feet as it passed directly over Jupiter’s most famous feature – the Great Red Spot. This massive anticyclonic storm has been raging for centuries, and Juno’s scheduled flyby was the closest any mission has ever come to it. It all took place at 7:06 p.m. PDT (11:06 p.m. EDT), just days after the probe celebrated its first year of orbiting the planet.

And today – Wednesday, July 12th, a few days ahead of schedule – NASA began releasing the pics that Juno snapped with its imager – the JunoCam – to the public. As part of the missions’ seventh orbit around the planet (perijove 7) these images are the closest and most detailed look of Jupiter’s Great Red Spot to date. And as you can clearly see by going to the JunoCam website, the pictures are a sight to behold!

And as always, citizen scientists and amateur astronomers are already busy processing the images. This level of public involvement in a NASA mission is something quite new. Prior to every perijove, NASA has asked for public input on what features they would like to see imaged. These Points of Interest (POIs), as they are called, are then photographed, and the public has had the option of helping to process them for public consumption.

“Great Red Spot from P7 Flyover”. Credit: NASA/SwRI/MSSS/Jason Major © public domain

As Scott Bolton – the associate VP at the Southwest Research Institute (SwRI) and the Principle Investigator (PI) of the Juno mission – said in a NASA press release, “For generations people from all over the world and all walks of life have marveled over the Great Red Spot. Now we are finally going to see what this storm looks like up close and personal.” And in just the past two days, several processed images have already come in.

Consider the images that were processed by Jason Major – an amateur astronomer and graphic designer who created the astronomy website Lights in the Dark. In the image above (his own work), we see a cropped version of the original JunoCam image in order to put Jupiter’s Great Red Spot center-frame. It was then color-adjusted and enhanced to mark the boundaries of the storm’s “eye” and the swirling clouds that surround it more clearly.

On his website, Major described the method he used to bring this image to life:

“[T]he image above is my first rendering made from a map-projected PNG file which centers and fully-frames the giant storm in contrast- and color-enhanced detail… The resolution is low but this is what my “high-speed” workflow is set up for—higher resolution images will take more time and I’m anticipating some incredible versions to be created and posted later today and certainly by tomorrow and Friday by some of the processing superstars in the imaging community (Kevin, Seán, Björn, Gerald, I’m looking at you!)”

Wide-frame shot of the Great Red Spot, processed to show contrast between the storm and Jupiter’s clouds. Credit: NASA/SwRI/MSSS/Jason Major © public domain

Above is another one of Major’s processed images, which was released shortly after the first one. This image shows the GRS in a larger context, using the full JunoCam image, and similarly processed to show contrasts. The same image was processed and submitted to the Juno website by amateur astronomers Amadeo Bellotti and Oliver Jenkins – though their submissions are admittedly less clear and colorful than Major’s work.

Other images include “Juno Eye“, a close up of Jupiter’s northern hemisphere that was processed by our good friend, Kevin M. Gill. Shown below, this image is a slight departure from the others (which focused intently on Jupiter’s Great Red Spot) to capture a close-up of the swirls in Jupiter’s northern polar atmosphere. Much like the GRS, these swirls are eddies that are created by Jupiter’s extremely high winds.

The Juno mission reached perijove – i.e. the point in its orbit where it is closest to Jupiter’s center – on July 10th at 6:55 p.m. PDT (9:55 p.m. EDT). At this time, it was about 3,500 km (2,200 mi) above Jupiter’s cloud tops. Eleven minutes and 33 seconds later, it was passing directly over the anticyclonic storm at a distance of about 9,000 km (5,600 mi); at which time, all eight of its instruments were trained on the feature.

In addition to the stunning array of images Juno has sent back, its suite of scientific instruments have gathered volumes of data on this gas giant. In fact, the early science results from the mission have shown just how turbulent and violent Jupiter’s atmosphere is, and revealed things about its complex interior structure, polar aurorae, its gravity and its magnetic field.

“Juno Eye”. Credit : NASA/JPL-Caltech/MSSS/SwRI/©Kevin M. Gill

The Juno mission reached Jupiter on July 5th, 2016, becoming the second probe in history to establish orbit around the planet. By the time the mission is scheduled to end in 2018 (barring any mission extensions), scientist hope to have learned a great deal about the planet’s structure and history of formation.

Given that this knowledge is likely to reveal things about the early history and formation of the Solar System, the payoffs from this mission are sure to be felt for many years to come after it is decommissioned.

In the meantime, you can check out all the processed images by going to the JunoCam sight, which is being regularly updated with new photos from Perijove 7!

Further Reading: NASA, JunoCam, Lights in the Dark

Why Are Planets Round?

Space Image Gallery

The Solar System is a beautiful thing to behold. Between its four terrestrial planets, four gas giants, multiple minor planets composed of ice and rock, and countless moons and smaller objects, there is simply no shortage of things to study and be captivated by. Add to that our Sun, an Asteroid Belt, the Kuiper Belt, and many comets, and you’ve got enough to keep your busy for the rest of your life.

But why exactly is it that the larger bodies in the Solar System are round? Whether we are talking about moon like Titan, or the largest planet in the Solar System (Jupiter), large astronomical bodies seem to favor the shape of a sphere (though not a perfect one). The answer to this question has to do with how gravity works, not to mention how the Solar System came to be.

Formation:

According to the most widely-accepted model of star and planet formation – aka. Nebular Hypothesis – our Solar System began as a cloud of swirling dust and gas (i.e. a nebula). According to this theory, about 4.57 billion years ago, something happened that caused the cloud to collapse. This could have been the result of a passing star, or shock waves from a supernova, but the end result was a gravitational collapse at the center of the cloud.

Due to this collapse, pockets of dust and gas began to collect into denser regions. As the denser regions pulled in more matter, conservation of momentum caused them to begin rotating while increasing pressure caused them to heat up. Most of the material ended up in a ball at the center to form the Sun while the rest of the matter flattened out into disk that circled around it – i.e. a protoplanetary disc.

The planets formed by accretion from this disc, in which dust and gas gravitated together and coalesced to form ever larger bodies. Due to their higher boiling points, only metals and silicates could exist in solid form closer to the Sun, and these would eventually form the terrestrial planets of Mercury, Venus, Earth, and Mars. Because metallic elements only comprised a very small fraction of the solar nebula, the terrestrial planets could not grow very large.

In contrast, the giant planets (Jupiter, Saturn, Uranus, and Neptune) formed beyond the point between the orbits of Mars and Jupiter where material is cool enough for volatile icy compounds to remain solid (i.e. the Frost Line). The ices that formed these planets were more plentiful than the metals and silicates that formed the terrestrial inner planets, allowing them to grow massive enough to capture large atmospheres of hydrogen and helium.

The leftover debris that never became planets congregated in regions such as the Asteroid Belt, the Kuiper Belt, and the Oort Cloud. So this is how and why the Solar System formed in the first place. Why is it that the larger objects formed as spheres instead of say, squares? The answer to this has to do with a concept known as hydrostatic equilibrium.

Hydrostatic Equilibrium:

In astrophysical terms, hydrostatic equilibrium refers to the state where there is a balance between the outward thermal pressure from inside a planet and the weight of the material pressing inward. This state occurs once an object (a star, planet, or planetoid) becomes so massive that the force of gravity they exert causes them to collapse into the most efficient shape – a sphere.

Typically, objects reach this point once they exceed a diameter of 1,000 km (621 mi), though this depends on their density as well. This concept has also become an important factor in determining whether an astronomical object will be designated as a planet. This was based on the resolution adopted in 2006 by the 26th General Assembly for the International Astronomical Union.

In accordance with Resolution 5A, the definition of a planet is:

  1. A “planet” is a celestial body that (a) is in orbit around the Sun, (b) has sufficient mass for its self-gravity to overcome rigid body forces so that it assumes a hydrostatic equilibrium (nearly round) shape, and (c) has cleared the neighborhood around its orbit.
  2. A “dwarf planet” is a celestial body that (a) is in orbit around the Sun, (b) has sufficient mass for its self-gravity to overcome rigid body forces so that it assumes a hydrostatic equilibrium (nearly round) shape [2], (c) has not cleared the neighborhood around its orbit, and (d) is not a satellite.
  3. All other objects, except satellites, orbiting the Sun shall be referred to collectively as “Small Solar-System Bodies”.
Montage of every round object in the solar system under 10,000 kilometers in diameter, to scale. Credit: Emily Lakdawalla/data from NASA /JPL/JHUAPL/SwRI/SSI/UCLA/MPS/DLR/IDA/Gordan Ugarkovic/Ted Stryk, Bjorn Jonsson/Roman Tkachenko

So why are planets round? Well, part of it is because when objects get particularly massive, nature favors that they assume the most efficient shape. On the other hand, we could say that planets are round because that is how we choose to define the word “planet”. But then again, “a rose by any other name”, right?

We have written many articles about the Solar planets for Universe Today. Here’s Why is the Earth Round?, Why is Everything Spherical?, How was the Solar System Formed?, and here’s Some Interesting Facts About the Planets.

If you’d like more info on the planets, check out NASA’s Solar System exploration page, and here’s a link to NASA’s Solar System Simulator.

We’ve also recorded a series of episodes of Astronomy Cast about every planet in the Solar System. Start here, Episode 49: Mercury.

Sources:

 

How Fast is Mach One?

What is Sound
FA-18_Hornet_breaking_sound_barrier_(7_July_1999)_-_filtered

Within the realm of physics, there are certain barriers that human beings have come to recognize. The most well-known is the speed of light, the maximum speed at which all conventional matter and all forms of information in the Universe can travel. This is a barrier that humanity may never be able to push past, mainly because doing so violate one of the most fundamental laws of physics – Einstein’s Theory of General Relativity.

But what about the speed of sound? This is another barrier in physics, but one which humanity has been able to break (several times over in fact). And when it comes to breaking this barrier, scientists use what is known as a Mach Number to represent the flow boundary past the local speed of sound. In other words, pushing past the sound barrier is defined as Mach 1. So how fast do you have to be going to do that?

Definition:

When we hear the term Mach 1 it is easy to assume it is the speed of sound through Earth’s atmosphere. However this term is more loaded than you might think. The truth is that a Mach Number is a ratio rather than an actual direct measurement of speed. And this ratio is due to the fact that the speed of sound varies from one location to the next, owing to differences in temperature and air density.

An F-22 Raptor reaching a velocity high enough to achieve a sonic boom. Credit: strangesounds.org

Mathematically, this can be defined as M = u/c, where M is the Mach number, u is the local flow velocity with respect to the boundaries (i.e. the speed of the object moving through the medium), and c is the speed of sound in that particular medium (i.e. local atmosphere, water, etc).

When the speed of sound is broken, this results in what is known as a “sonic boom”. This is the loud, cracking sound that is associated with the shock waves that are created by an object traveling faster than the local speed of sound. Examples range an aircraft breaking the sound barrier to miniature booms caused by bullets flying by, or the crack of a bullwhip.

Speed of Sound:

Basically, the speed of sound is the distance traveled in a certain amount of time by a sound wave as it propagates through an elastic medium. As already noted, this is not a universal value, but comes down to the composition of the medium and the conditions of that medium.  When we talk of the speed of sound, we refer to the speed of sound in Earth’s atmosphere. But even that is subject to variation.

However, scientists tend to rely on the speed of sound as measured in dry air (i.e. low humidity) and at a temperature of 20 °C (68 °F) as the standard. Under these conditions, the local speed of sound is 343 meters per second (1,235 km/h; 767 mph) – or 1 kilometer in 2.91 s and 1 mile in 4.69 s.

Classifications:

As with most ratios, there are approximations and categories that are used to measure the speed of the object in relation to the sound barrier. This gives us the categories of subsonic, transonic, supersonic, and hypersonic. This categorization system is often used to classify aircraft or spacecraft, the minimum requirement being that most of the craft classified have the ability to approach or exceed the speed of sound.

The Cessna 172, a commercial, propeller-driven aircraft that is classified as subsonic. Credit: Wikipedia Commons/Adrian Pingstone

For aircraft or any object that flies at a speed below the sound barrier, the classification of subsonic applies. This category includes most commuter jets and small commercial aircraft, though some exceptions have been noted (i.e. supersonic commercial jets like the Concorde).

Since these craft never meet or exceed the speed of sound, they will have a Mach number that is less than one and therefore expressed in decimal form – i.e. less than Mach 0.8 (273 m/s; 980 km/h; 609 mph). Typically, these aircraft are propeller-driven and tend to have high aspect-ratio (slender) wings and rounded features.

The designation of transonic applies to a condition of flight where a range of airflow velocities exist around and past the aircraft. These speeds are concurrently below, at, and above the speed of sound, ranging from Mach 0.8 to 1.2 (273-409 m/s; 980-1,470 km/h; 609-914 mph). Transonic aircraft nearly always have swept wings, causing the delay of drag-divergence, and are driven by jet engines.

The next category is supersonic aircraft. These are craft that can move beyond the compression of air that is the “sound barrier.” These craft generally have a Mach number of between 1 and 5 (410–1,702 m/s; 1,470–6,126 km/h; 915-3,806 mph). Aircraft designed to fly at supersonic speeds show large differences in their aerodynamic design because of the radical differences in the behavior of flows above Mach 1.

These include sharp edges, thin wing sections, and tail stabilizers (aka. fins) or canards (forewings) that are capable of adjusting. Craft that typically have this designation include modern fighter jets, spy planes (like the SR-71 Blackbird) and the aforementioned Concorde.

The last category is hypersonic, which applies to aircraft that can exceed the speed of Mach 5 and can achieve speeds as high as Mach 10 (1,702–3,403 m/s; 6,126–12,251 km/h; 3,806–7,680 mph). Very few aircraft can move at such speeds, and tend to be rocket-powered (like the X-15), scramjets (like the X-43, or HyperX), or spacecraft that are in the process of leaving Earth’s atmosphere.

Another example is objects entering the Earth’s atmosphere. These can take the form of spacecraft performing re-entry, or meteorites that have passed through and broken up in Earth’s atmosphere. For example, the meteor that entered the skies above the above the small town of Chelyabinsk, Russia, in February of 2013 was traveling at a speed of about 19.16 ± 0.15 km/s (68,436 – 69,516 km/h; 42,524 – 43,195 mph).

In other words, the meteorite was traveling between Mach 55 and 56 when it hit our atmosphere! Given its tremendous speed, when the meteor reached the skies above Chelyabinsk, it created a sonic boom so powerful that it caused extensive damage to thousand of building in six cities across the region. This damage, which included a lot of exploding windows, resulted in 1,500 people being injured.

So how fast is Mach One? The short answer is that it depends on where you are. But in general, it is a speed that exceeds about 1200 km/h or 750 mph. If you’re capable of going this fast, you will be breaking the sound barrier, and people for miles around will be hearing about it!

We have written many interesting articles about sound here Universe Today. Here’s What is Sound?, What is the Fastest Jet in the World?, What is Air Resistance?, and What Does NASA Sound Like?

For more information, check out NASA’s Article about the Mach Number, and here’s a link to a lesson about the Mach Number.

We’ve recorded an episode of Astronomy Cast all about the space shuttle. Listen here, Episode 127: The US Space Shuttle.

Sources:

We’re About to Get Our Closest Look at Jupiter’s Great Red Spot

True color mosaic of Jupiter, based on images taken by the narrow angle camera onboard NASA's Cassini spacecraft on December 29, 2000, during its closest approach to the giant planet at a distance of approximately 10 million kilometers (6.2 million miles). Credits: NASA/JPL/Space Science Institute

When the Juno mission reached Jupiter on July 5th, 2016, it became the second mission in history to establish orbit around the Solar System’s largest planet. And in the course of it conducting its many orbits, it has revealed some interesting things about Jupiter. This has included information about its atmosphere, meteorological phenomena, gravity, and its powerful magnetic fields.

And just yesterday – on Monday, July 10th at 7:06 p.m. PDT (11:06 p.m. EDT) – just days after the probe celebrated its first year of orbiting the planet, the Juno mission passed directly over Jupiter’s most famous feature – the Great Red Spot. This massive anticyclonic storm has been a focal point for centuries, and Juno’s scheduled flyby was the closest any mission has ever come to it.

Jupiter’s Great Red Spot was first observed during the late 17th century, either by Robert Hooke or Giovanni Cassini. By 1830, astronomers began monitoring this anticyclonic storm, and have noted periodic expansions and regressions in its size ever since. Today, it is 16,000 kilometers (10,000 miles) in diameter and reaches wind speeds of 120 meters per second (432 km/h; 286 mph) at the edges.

The Juno spacecraft isn’t the first one to visit Jupiter. Galileo went there in the mid 90’s, and Voyager 1 snapped a nice picture of the clouds on its mission. Credit: NASA

As part of its sixth orbit of Jupiter’s turbulent cloud tops,  Juno passed close to Jupiter’s center (aka. perijove), which took place at 6:55 p.m. PDT (9:55 p.m. EDT). Eleven minutes later – at 7:06 p.m. PDT (10:06 p.m. EDT) – the probe flew over the Great Red Spot. In the process, Juno was at a distance of just 9,000 km (5,600 miles) from the anticyclonic storm, which is the closest any spacecraft has ever flown to it.

During the flyby, Juno had all eight of its scientific instruments (as well its imager, the JunoCam) trained directly on the storm. With such an array aimed at this feature, NASA expects to learn more about what has been powering this storm for at least the past three and a half centuries. As Scott Bolton, the principal investigator of Juno at the Southwest Research Institute (SwRI), said prior to the event in a NASA press release:

“Jupiter’s mysterious Great Red Spot is probably the best-known feature of Jupiter. This monumental storm has raged on the Solar System’s biggest planet for centuries. Now, Juno and her cloud-penetrating science instruments will dive in to see how deep the roots of this storm go, and help us understand how this giant storm works and what makes it so special.”

This perijove and flyby of the Giant Red Spot also comes just days after Juno celebrated its first anniversary around Jupiter. This took place on July 4th at 7:30 p.m. PDT (10:30 p.m. EDT), at which point, Juno had been in orbit around the Jovian planet for exactly one year. By this time, the spacecraft had covered a distance of 114.5 million km (71 million mi) while orbiting around the planet.

This artist's illustration shows Juno's Microwave Radiometer observing deep into Jupiter's atmosphere. The image shows real data from the 6 MWR channels, arranged by wavelength. Credit: NASA/SwRI/JPL
This artist’s illustration shows Juno’s Microwave Radiometer observing deep into Jupiter’s atmosphere. The image shows real data from the 6 MWR channels, arranged by wavelength. Credit: NASA/SwRI/JPL

The information that Juno has collected in that time with its advanced suite of instruments has already provided fresh insights into Jupiter’s interior and the history of its formation. And this information, it is hoped, will help astronomers to learn more about the Solar System’s own history of formation. And in the course of making its orbits, the probe has been put through its paces, absorbing radiation from Jupiter’s powerful magnetic field.

As Rick Nybakken, the project manager for Juno at NASA’s Jet Propulsion Laboratory, put it:

“The success of science collection at Jupiter is a testament to the dedication, creativity and technical abilities of the NASA-Juno team. Each new orbit brings us closer to the heart of Jupiter’s radiation belt, but so far the spacecraft has weathered the storm of electrons surrounding Jupiter better than we could have ever imagined.”

The Juno mission is set to conclude this coming February, after completing 6 more orbits of Jupiter. At this point, and barring any mission extensions, the probe will be de-orbited to burn up in Jupiter’s outer atmosphere. As with the Galileo spacecraft, this is meant to avoid any possibility of impact and biological contamination with one of Jupiter’s moons.

Further Reading: NASA

How Long is a Day on the Moon?

A photo of the full moon, taken from Apollo 11 on its way home to Earth, from about 18,520 km (10,000 nm) away. Credit: NASA
A photo of the full moon, taken from Apollo 11 on its way home to Earth, from about 18,520 km (10,000 nm) away. Credit: NASA

The Moon has been around since the earliest days of the Solar System. To human beings, there has never been a time when we couldn’t look up in the night sky and either see the Moon hanging there, or know that it would be back the very next night (i.e. a New Moon). And thanks to the development of modern astronomy and space exploration, our understanding of the Moon has grown immensely.

For instance, we know that the Moon formed early in Earth’s history, and that it may have played an important role in the development of life here on Earth. We’ve also learned that Moon is tidally-locked with Earth, which means that one side is constantly facing towards it. But how long is a day on the Moon? With one side facing the Earth and the other side facing out, what constitutes a single day on the lunar surface?

To break it down simply, a day on the Moon lasts as long as 29.5 Earth days. In other words, if you were standing on the surface of the Moon, it would take 29.5 days for the Sun to move all the way across the sky and return to its original position again. However, as with all bodies in the Solar System, distinguishing between different types of days (based on different types of periods) is necessary.

Orbit and Rotation:

Since ancient times, lunar calendars have been based on thirteen months of 28 days each, reflecting the lunar cycle. But as astronomers have discovered from centuries of studying the Moon’s behavior, the Moon’s orbital period (i.e. the time it takes for the Moon to complete a single orbit around the Earth) is actually the equivalent of about 27.3 Earth days – or 27 days 7 hours 43 minutes and 11.5 seconds, to be precise.

And while the Moon rotates on its own axis, the speed at which it rotates (aka. it’s sidereal rotation) is very slow. In fact, it takes the Moon the equivalent of 27.3 Earth days to complete a single rotation on its axis, the same amount of time it takes to complete a single orbit around Earth.  What this means is that the Moon is tidally-locked with Earth.

In other words, the Moon always points the same face towards the Earth, which is why human beings are so familiar with the “face” of the Moon, and refer to the side that faces away from us as the “the dark side”. Therefore, if you were standing on the surface of the Moon, you would always see the Earth in exactly the same position, while the stars and the Sun would continue to move around in the sky.

Sidereal vs. Synodic Day:

However, the Moon’s sidereal rotation is not where we get a the value of a single lunar day from. While it takes 27.3 days for it to orbit the Earth, we have to keep in mind that the Earth is also orbiting the Sun. The Earth returns to its same position in orbit every 365 days. So in order for the Sun to catch up to its same position in the sky from the perspective of the Moon, it has to turn a little more.

The extra 2.2 days is the time for the Moon to catch up in its rotation. And while the amount of time the Moon takes to complete one turn on its axis with respect to the stars is 27.3 days (a sidereal day), the amount of time it takes for the Sun to return to the same position in the sky is called a synodic day, and that’s what takes 29.5 days.

Ergo, a single day on the Moon, with respect to the Sun returning to the same position in the sky, is actually about as long as an average month here on Earth. So if people are planning on living there someday, and aren’t living in the permanently shadowed craters that exist in the southern and norther polar regions, that’s something they might have to get used to.

As with all the bodies of the Solar System, it all comes down to a matter of perspective. And if you’re living on the Moon, your perspective on what constitutes a day will be vastly different from that of a person who was born on Earth.

We have written many interesting articles about how long a day is on the planets of the Solar System. Here’s How Long is a Day on the Other Planets of the Solar System?, How Long is a Day on Mercury?, How Long is a Day on Venus?, How Long is a Day on the Earth?, How Long is a Day on Mars?, How Long is a Day on Jupiter?, How Long is a Day on Saturn?, How Long is a Day on Uranus?, How Long is a Day on Neptune?, and How Long is a Day on Pluto?

For more information, check out NASA’s Lunar and Planetary Science page. And here’s NASA’s Solar System Exploration Guide.

Astronomy Cast also has a good episode on the subject. Listen here: Episode 17: Where Did the Moon Come From?

Source:

Gaia Finds Six Stars Zipping out of the Milky Way

An artist's conception of a hypervelocity star that has escaped the Milky Way. Credit: NASA

In 2013, the European Space Agency launched the Gaia spacecraft. As the successor to the Hipparcos mission, this space observatory has spent the past three and a half years gathering data on the cosmos. Before it retires sometime next year (though the mission could be extended), this information will be used to construct the largest and most precise 3D astronomical map ever created.

In the course of surveying the cosmos, Gaia has also revealed some very interesting things along the way. For example, after examining the Gaia catalog with a specially-designed artificial neural network, a team of European researchers recently detected six new hypervelocity stars in the Milky Way. And one of these stars is moving so fast that it may eventually leave our galaxy.

Their study – titled “An Artificial Neural Network to Discover Hypervelocity Stars: Candidates in Gaia DR1/TGAS” – was recently published in the Monthly Notices of the Royal Astronomical Society. It was presented late last month at the European Week of Astronomy and Space Science, which was being held from June 26th to June 30th in Prague, Czech Republic.

Artist’s conception of the Gaia telescope backdropped by a photograph of the Milky Way taken at the European Southern Observatory. Credit: ESA/ATG medialab; background: ESO/S. Brunier

Hypervelocity stars are a rare and fascinating thing. Whereas all stars in the Milky Way are in constant motion, orbiting around the center of our galaxy, some are accelerated to speeds of up to hundreds of kilometers per second. In the past, astronomers have deduced that these fast-moving stars are the result of a close stellar encounter or a supernova explosion of a stellar companion.

And a little over a decade ago, astronomers became aware of a new class of high-speed stars that are believed to have been accelerated from past interactions with the supermassive black hole (Sagittarius A*) that sits at the center of our galaxy. These stars are extremely important to the study of the overall structure of the Milky Way, as they are indicative of the kinds of events and forces that have shaped its history.

As Elena Maria Rossi, from Leiden University in the Netherlands and one of the co-authors on the paper, explained in an ESA press release:

These are stars that have traveled great distances through the Galaxy but can be traced back to its core – an area so dense and obscured by interstellar gas and dust that it is normally very difficult to observe – so they yield crucial information about the gravitational field of the Milky Way from the centre to its outskirts.

Artist’s impression of stars speeding through the Galaxy. Credit: ESA

Finding such stars is no easy task, mainly because their velocity makes them extremely difficult to spot in the vast and crowded disk of the Milky Way. As a result, scientists have relied on looking for young, massive stars (2.5 to 4 Solar masses) in the old stellar population of the Galactic. Basically, their young age and high masses are indications that they might not have originated there.

Combined with measurements of their past speeds and paths, this method has confirmed the existence of hypervelocity stars in the past. However, only 20 hypervelocity stars have been spotted to date, and they have all been young and massive in nature. Scientists believe that many more stars of other ages and masses are also being accelerated through the Milky Way, but were previously unable to spot them.

To address this, the European team – led by from Tomasso Marchetti of Leiden University in the Netherlands – began considering how to use Gaia‘s vast dataset to optimize the search for more hypervelocity stars. After testing various methods, they adopted the artificial neural net approach – i.e. using a machine learning algorithm – to search through the star census data Gaia is in the process of gathering.

Beginning in the first half of 2016, the team began developing and training this program to be ready for the first release of Gaia data – which occurred a few months later on Sept. 14th, 2016. As Tommaso Marchetti, a PhD student at Leiden University, described the process:

“In the end, we chose to use an artificial neural network, which is software designed to mimic how our brain works. After proper ‘training’, it can learn how to recognize certain objects or patterns in a huge dataset. In our case, we taught it to spot hypervelocity stars in a stellar catalogue like the one compiled with Gaia.”

Artist’s impression of a hypervelocity star that was detected using the ESO’s Very Large Telescope. Credit: ESO

In addition to a map with the positions of over a billion stars, this first data release included a smaller catalogue with the distances and motions for two million stars. This catalog – which is known as the Tycho-Gaia Astrometric Solution (TGAS) – combined data from both the first year of the Gaia mission and with data from the Hipparcos mission, and is essentially a taste of what’s to come from Gaia.

On the day of the catalog’s release, Marchetti and his team ran their algorithm on the two million stars within the TGAS, which revealed some interesting finds. “In just one hour, the artificial brain had already reduced the dataset to some 20 000 potential high-speed stars, reducing its size to about 1%,” said Rossi. “A further selection including only measurements above a certain precision in distance and motion brought this down to 80 candidate stars.”

The team then examined these 80 stars in more detail, and compared the information about their motions to data from other catalogues. Paired with additional observations, they eventually found six stars which appeared to be moving faster than 360 km/s. One even appeared to be exceeding 500 km/s, which means that it is no longer bound by the gravity of our Milky Way and will eventually leave it altogether.

But perhaps the sot significant aspect of this find is the fact these stars are not particularly massive like the previous 20 that had been discovered, and were comparable in mass to our Sun. In addition, the 5 slower stars are likely to become a focal point of study, as scientists are eager to determine what slowed them down. One possible explanation is that interaction with the galaxy’s dark matter might have been responsible.

Gaia’s first sky map. Credit: ESA/Gaia/DPAC. Credit: A. Moitinho & M. Barros (CENTRA – University of Lisbon), on behalf of DPAC.

Much as the TGAS has been merely an early indication of the vast and valuable data Gaia will eventually provide, this study showcases the kinds of discoveries and research that this data will enable. By with not just 2 million, but a billion stars to study, astronomers are sure to reveal many new and exciting things about the dynamics of our Milky Way and the kinds of forces that have shaped it.

For this purpose, Marchetti and his team are upgrading their program to handle the much larger data set, which is scheduled to be released in April of 2018. This catalog will include distance and motions for over a billion stars, as well as velocities for a specific subset. From this, the team may find that fast-moving stars which are being booted out of the Milky Way are a lot more common than previously thought.

And be sure to enjoy this video that shows the paths of these six newly-discovered fast-moving stars, courtesy of the ESA:

Further Reading: ESA

Titan’s Lakes are Nice and Calm. The Perfect Spot for a Landing

A new study has revealed that Titan's methane lakes could be calm enough for future missions to land there. Credit: bisbos.com

Ever since the Cassini orbiter and the Huygens lander provided us with the first detailed glimpse of Saturn’s moon Titan, scientists have been eager to mount new missions to this mysterious moon. Between its hydrocarbon lakes, its surface dunes, its incredibly dense atmosphere, and the possibility of it having an interior ocean, there is no shortage of things that are worthy of research.

The only question is, what form would this mission take (i.e. aerial drone, submarine, balloon, lander) and where should it set down? According to a new study led by the University of Texas at Austin, Titan’s methane lakes are very calm and do not appear to experience high waves. As such, these seas may be the ideal place for future missions to set down on the moon.

Their study, which was titled “Surface Roughness of Titan’s Hydrocarbon Seas“, appeared in the June 29th issue of the journal Earth and Planetary Science Letters. Led by Cyril Grima, a research associate at the University of Texas Institute for Geophysics (UTIG), the team behind the study sought to determine just how active the lakes are in Titan’s northern polar region are.

Titan’s three largest lakes and their surrounding areas as seen by the Cassini RADAR instrument. The researchers used the instrument to study waves on the lake surfaces. Credit: Cyril Grima/ The University of Texas at Austin

As Grima explained in a University of Texas press release, this research also shed light on the meteorological activity on Titan:

“There’s a lot of interest in one day sending probes to the lakes, and when that’s done, you want to have a safe landing, and you don’t want a lot of wind. Our study shows that because the waves aren’t very high, the winds are likely low.”

Towards this end, Grima and his colleagues examined radar data obtained by the Cassini mission during Titan’s early summer season. This consisted of measurements of Titan’s northern lakes, which included Ontario Lacus,  Ligeia Mare, Punga Mare, and Kraken Mare. The largest of the three, Kraken Mars, is estimated to be larger than the Caspian Sea – i.e. 4,000,000 km² (1,544,409 mi²) vs 3,626,000 km2 (1,400,000 mi²).

With the help of the Cassini RADAR Team and researchers from Cornell University, the Johns Hopkins University Applied Physics Laboratory (JHUAPL), NASA’s Jet Propulsion Laboratory (JPL) and elsewhere, the team applied a technique known as radar statistical reconnaissance. Developed by Grima, this technique relies on radar data to measure the roughness of surfaces in minute detail.

This technique has also been used to measure snow density and the surface roughness of ice in Antarctica and the Arctic. Similarly, NASA has used the technique for the sake of selecting a landing site on Mars for their Interior Exploration using Seismic Investigations, Geodesy and Heat Transport (Insight) lander, which is scheduled to launch next year.

The left image shows a mosaic of images of Titan taken by the Cassini spacecraft in near infrared light. Titan’s polar seas are visible as sunlight glints off of them. The right image is a radar image of Kraken Mare. Credit: NASA Jet Propulsion Laboratory.
The left image shows a mosaic of images of Titan taken by the Cassini spacecraft in near infrared light. Titan’s polar seas are visible as sunlight glints off of them. The right image is a radar image of Kraken Mare. Credit: NASA Jet Propulsion Laboratory.

From this, Grima and his colleagues determined that waves on these lakes are quite small, reaching only 1 cm in height and 20 cm in length. These findings indicate that these lakes would be a serene enough environment that future probes could make soft landings on them and then begin the task of exploring the surface of the moon. As with all bodies, waves on Titan could be wind-driven, triggered by tidal flows, or the result of rain or debris.

As a result, these results are calling into question what scientists think about seasonal change on Titan. In the past, it was believed that summer on Titan was the beginning of moon’s windy season. But if this were the case, the results would have indicated higher waves (the result of higher winds). As Alex Hayes, an assistant professor of astronomy at Cornell University and a co-author on the study, explained:

“Cyril’s work is an independent measure of sea roughness and helps to constrain the size and nature of any wind waves. From the results, it looks like we are right near the threshold for wave generation, where patches of the sea are smooth and patches are rough.”

These results are also exciting for scientists who are hoping to plot future missions to Titan, especially by those who are hoping to see a robotic submarine sent to Titan’s to investigate its lakes for possible signs of life. Other mission concepts involve exploring Titan’s interior ocean, its surface, and its atmosphere for the sake of learning more about the moon’s environment, its organic-rich environment and probiotic chemistry.

And who knows? Maybe, just maybe, these missions will find that life in our Solar System is more exotic than we give it credit before, going beyond the carbon-based life that we are familiar with to include the methanogenic.

Further Reading: University of Texas JSG, Earth and Planetary Science Letters

Did you Know There are X-rays Coming from Pluto? That’s Strange, What’s Causing it?

An artist's illustration of Pluto. Credit: NASA/New Horizons

Once held to be the outermost planet of the Solar System, Pluto‘s designation was changed by the International Astronomical Union in 2006, owing to the discovery of many new Kuiper Belt Objects that were comparable in size. In spite of this, Pluto remains a source of fascination and a focal point of much scientific interest. And even after the historic flyby conducted by the New Horizons probe in July of 2015, many mysteries remain.

What’s more, ongoing analysis of the NH data has revealed new mysteries. For instance, a recent study by a team of astronomers indicated that a survey by the Chandra X-ray Observatory revealed the presence of some rather strong x-rays emissions coming from Pluto. This was unexpected, and is causing scientists to rethink what they thought they knew about Pluto’s atmosphere and its interaction with solar wind.

In the past, many Solar bodies have been observed emitting x-rays, which were the result of interaction between solar wind and neutral gases (like argon and nitrogen). Such emissions have been detected from planets like Venus and Mars (due to the presence of argon and/or nitrogen in their atmospheres), but also with smaller bodies like comets – which acquire halos due to outgassing.

Artist’s impression of New Horizons’ close encounter with the Pluto–Charon system. Credit: NASA/JHU APL/SwRI/Steve Gribben

Ever since the NH probe conducted its flyby of Pluto in 2015, astronomers have been aware that Pluto has an atmosphere which changes size and density with the seasons. Basically, as the planet reaches perihelion during its 248 year orbital period – a distance of 4,436,820,000 km, 2,756,912,133 mi from the Sun – the atmosphere thickens due to the sublimation of frozen nitrogen and methane on the surface.

The last time Pluto was at perihelion was on September 5th, 1989, which means that it was still experiencing summer when NH made its flyby. While studying Pluto, the probe detected an atmosphere that was primarily composed of nitrogen gas (N²) along with methane (CH4) and carbon dioxide (CO²). Astronomers therefore decided to look for signs of x-ray emissions coming from Pluto’s atmosphere using the Chandra X-ray Observatory.

Prior to the NH mission’s flyby, most models of Pluto’s atmosphere expected it to be quite extended. However, the probe found that the atmosphere was less extended and that its rate of loss was hundreds of times lower than what these models predicted. Therefore, as the team indicated in their study, they expected to find x-ray emissions that were consistent with what the NH flyby observed:

“Given that most pre-encounter models of Pluto’s atmosphere had predicted it to be much more extended, with an estimated loss rate to space of ~1027 to 1028 mol/sec of N² and CH4… we attempted to detect X-ray emission created by [solar wind] neutral gas charge exchange interactions in the low density neutral gas surrounding Pluto,” they wrote.

Images sent by NASA’s New Horizons spacecraft show possible clouds floating over the frozen landscape including the streaky patch at right. Credit: NASA/JHUAPL/SwR

However, after consulting data from the Advanced CCD Imaging Spectrometer (ACIS) aboard Chandra, they found that x-ray emissions coming from Pluto were greater than what this would allow for.  In some cases, strong x-ray emissions have been noted coming from other smaller objects in the Solar System, which is due to the scattering of solar x-rays by small dust grains composed of carbon, nitrogen and oxygen.

But the energy distribution they noted with Pluto’s x-rays were not consistent with this explanation. Another possibility that the team offered is that they could be due to some process (or processes) that focus the solar wind near Pluto, which would enhance the effect of its modest atmosphere. As they indicate in their conclusions:

“The observed emission from Pluto is not aurorally driven. If due to scattering, it would have to be sourced by a unique population of nanoscale haze grains composed of C, N, and O atoms in Pluto’s atmosphere resonantly fluorescing under the Sun’s insolation. If driven by charge exchange between [solar wind] minor ions and neutral gas species (mainly CH4) escaping from Pluto, then density enhancement and adjustment of the [solar wind] minor ion relative abundance in the interaction region near Pluto is required versus naïve models.”

For the time being, the true cause of these x-ray emissions is likely to remain a mystery. They also highlight the need for more research when it comes to this distant and most massive of Kuiper Belt Objects. Luckily, the data provided by the NH mission is likely to be poured over for decades, revealing new and interesting things about Pluto, the outer Solar System, and how the most distant worlds from our Sun behave.

The study – which was accepted for publication in the journal Icarus – was conducted by astronomers from the Johns Hopkins University Applied Physics Laboratory (JHUAPL), the Harvard-Smithsonian Center for Astrophysics, the Southwest Research Institute (SwI), the Vikram Sarabhai Space Center (VSCC), and NASA’s Jet Propulsion Laboratory and Ames Research Center.

Further Reading: CfA, arXiv

I Wonder if it has Room Service? Here’s the Space Hotel that Won a Recent NASA Competition

The Managed, Reconfigurable, In-space Nodal Assembly (MARINA), developed by MIT graduate students, is designed as a habitable commercially owned module for use in low Earth orbit. Credit: MIT/MARINA team

Looking to the future of space exploration, there really is no question that it will involve a growing human presence in Low Earth Orbit (LEO). This will include not only successors to the International Space Station, but most likely commercial habitats and facilities. These will not only allow for ventures like space tourism, but will also facilitate missions that take us back to the Moon, to Mars, and even beyond.

With this purpose in mind, an interdisciplinary team of MIT graduate students designed a space habitat known as the Managed, Reconfigurable, In-space Nodal Assembly (MARINA). This module would serve as an privately-owned space station that would be occupied by two anchor-tenants for a period of ten years; a luxury hotel that would provide orbital accommodations, and NASA.

For their invention, the team won first prize in the graduate division of the Revolutionary Aerospace Systems Concepts-Academic Linkage Design Competition Forum (RASC-AL), a yearlong graduate-level competition hosted by NASA. This challenge involved designing a commercial module for use in low Earth orbit that could also serve as a Mars transit vehicle in the future.

In the future, LEO will become home to commercial modules (like the Bigelow Aerospace B330 expandable module, shown here), will become a reality. Credit: Bigelow Aerospace

Since 2002, RASC-AL competitions have sought to engage university students and advisors for the purpose of coming up with ideas that could enhancing future NASA missions. For this year’s competition, NASA asked teams to develop human spaceflight concepts that focused on operations in cislunar space – i.e. in, around, and beyond the Moon – that could also facilitate their proposed “Journey to Mars” by the 2030s.

Specifically, they were tasked with finding ways to leverage innovations and new technologies to improve humanity’s ability to work more effectively in microgravity. With this in mind, the themes for this year’s competition ranged from from the design of more efficient subsystems to the development of architectures that support NASA’s goal of extending humanity’s reach into space.

These included new designs for a Lightweight Exercise Suite, Airlock Design, concepts for a Commercially Enabled LEO/Mars Habitable Module, and concepts for a new Logistics Delivery System. As Pat Troutman, the Human Exploration Strategic Analysis lead at NASA’s Langley Research Center, said in a NASA press statement:

“We are carefully examining what it will take to establish a presence beyond low-Earth orbit, where astronauts will build and begin testing the systems needed for challenging missions to distant destinations, including Mars. The 2017 RASC-AL university teams have developed exciting concepts with supporting engineering analysis that may influence how future deep space infrastructure will look and operate.”

Members of the MIT team (from left to right): Caitlin Mueller (faculty advisor), Matthew Moraguez, George Lordos, and Valentina Sumini. Credit: MIT/MARINA team

Led by Matthew Moraguez, a graduate student at MIT’s Department of Aeronautics and Astronautics (AeroAstro) and a member of the Strategic Engineering Research Group (SERG), the MIT team focused on the theme of creating a Commercially Enabled LEO Habitat Module. Their concept, which incorporates lessons that have been learned from the ISS, was designed with the needs of both the private and public space sectors in mind.

As George Lordos – a graduate fellow in the MIT System Design and Management (SDM) Program, and a team member of both MARINA and SERG – explained:

“Just like a yacht marina, MARINA can provide all essential services, including safe harbor, reliable power, clean water and air, and efficient logistics and maintenance. This will facilitate design simplicity and savings in construction and operating costs of customer-owned modules. It will also incent customers to lease space inside and outside MARINA’s node modules and make MARINA a self-funded entity that is attractive to investors.”

To meet their goals for the competition , the team came up with a modular design for MARINA that featured several key innovations. These included extensions to the International Docking System Standard (IDSS) interface (used aboard the ISS), modular architecture, and a distribution of subsystem functions throughout these modules. As Moraguez explained, their design will allow for some wide-ranging opportunities.

“Modularized service racks connect any point on MARINA to any other point via the extended IDSS interface,” he said. “This enables companies of all sizes to provide products and services in space to other companies, based on terms determined by the open market. Together these decisions provide scalability, reliability, and efficient technology development benefits to MARINA and NASA.”

Another important benefit comes in the form of cost-savings. According to NASA estimates, the recurring cost of MARINA will be about $360 million per year, which represents a significant reduction over the current costs of maintaining and operating the ISS. In total, it would offer NASA a savings of about $3 billion per year, which is approximately 16% of the agency’s annual budget.

But what is perhaps most interesting about the MARINA concept is the fact that it could serve as the world’s first space hotel. According to Valentina Suminia, a postdoc at MIT who contributed to the architectural concept, the space hotel will be “a luxury Earth-facing eight-room space hotel complete with bar, restaurant, and gym, will make orbital space holidays a reality.”

Other commercial features include serviced berths that would be rented out to accommodate customer-owned modules. This goes for the station’s interior modularized rack space as well, where smaller companies that provide contract services to on-board occupants would be able to rent out space. Would it be too much to ask that it also has robot butlers?

The RASCAL competition began in August of 2016 in Cocoa Beach, Florida, and concluded on June 2nd, 2017. The top overall honors were awarded to the teams from Virginia Tech and the University of Maryland for their space habitat concepts, known as Project Theseus and Ultima Thule, respectively.

Further Reading: MIT, NASA

How Does Mercury Compare to Earth?

Mercury and Earth, size comparison. Credit: NASA / APL (from MESSENGER)

Mercury was appropriately named after the Roman messenger of the Gods. This is owed to the fact that its apparent motion in the night sky was faster than that of any of the other planets. As astronomers learned more about this “messenger planet”, they came to understand that its motion was due to its close orbit to the Sun, which causes it to complete a single orbit every 88 days.

Mercury’s proximity to the Sun is merely one of its defining characteristics. Compared to the other planets of the Solar System, it experiences severe temperature variations, going from very hot to very cold. It’s also very rocky, and has no atmosphere to speak of. But to truly get a sense of how Mercury stacks up compared to the other planets of the Solar System, we need to a look at how Mercury compares to Earth.

Size, Mass and Orbit:

The diameter of Mercury is 4,879 km, which is approximately 38% the diameter of Earth. In other words, if you put three Mercurys side by side, they would be a little larger than the Earth from end to end. While this makes Mercury smaller than the largest natural satellites in our system – such as Ganymede and Titan – it is more massive and far more dense than they are.

Mercury, as imaged by the MESSENGER spacecraft, revealing parts of the never seen by human eyes. Image Credit: NASA/JHUAPL/Carnegie Institution of Washington

In fact, Mercury’s mass is approximately 3.3 x 1023 kg (5.5% the mass of Earth) which means that its density – at 5.427 g/cm3 – is the second highest of any planet in the Solar System, only slightly less than Earth’s (5.515 g/cm3). This also means that Mercury’s surface gravity is 3.7 m/s2, which is the equivalent of 38% of Earth’s gravity (0.38 g). This means that if you weighed 100 kg (220 lbs) on Earth, you would weigh 38 kg (84 lbs) on Mercury.

Meanwhile, the surface area of Mercury is 75 million square kilometers, which is approximately 10% the surface area of Earth. If you could unwrap Mercury, it would be almost twice the area of Asia (44 million square km). And the volume of Mercury is 6.1 x 1010 km3, which works out to 5.4% the volume of Earth. In other words, you could fit Mercury inside Earth 18 times over and still have a bit of room to spare.

In terms of orbit, Mercury and Earth probably could not be more different. For one, Mercury has the most eccentric orbit of any planet in the Solar System (0.205), compared to Earth’s 0.0167. Because of this, its distance from the Sun varies between 46 million km (29 million mi) at its closest (perihelion) to 70 million km (43 million mi) at its farthest (aphelion).

This puts Mercury much closer to the Sun than Earth, which orbits at an average distance of 149,598,023 km (92,955,902 mi), or 1 AU. This distance ranges from 147,095,000 km (91,401,000 mi) to 152,100,000 km (94,500,000 mi) – 0.98 to 1.017 AU. And with an average orbital velocity of 47.362 km/s (29.429 mi/s), it takes Mercury a total 87.969 Earth days to complete a single orbit – compared to Earth’s 365.25 days.

The Orbit of Mercury during the year 2006. Credit: Wikipedia Commons/Eurocommuter

However, since Mercury also takes 58.646 days to complete a single rotation, it takes 176 Earth days for the Sun to return to the same place in the sky (aka. a solar day). So on Mercury, a single day is twice as long as a single year. Meanwhile on Earth, a single solar day is 24 hours long, owing to its rapid rotation of 1674.4 km/h. Mercury also has the lowest axial tilt of any planet in the Solar System – approximately 0.027°, compared to Earth’s 23.439°.

Structure and Composition:

Much like Earth, Mercury is a terrestrial planet, which means it is composed of silicate minerals and metals that are differentiated between a solid metal core and a silicate crust and mantle. For Mercury, the breakdown of these elements is higher than Earth. Whereas Earth is primarily composed of silicate minerals, Mercury is composed of 70% metallic and 30% of silicate materials.

Also like Earth, Mercury’s interior is believed to be composed of a molten iron that is surrounded by a mantle of silicate material. Mercury’s core, mantle and crust measure 1,800 km, 600 km, and 100-300 km thick, respectively; while Earth’s core, mantle and crust measure 3478 km, 2800 km, and up to 100 km thick, respectively.

What’s more, geologists estimate that Mercury’s core occupies about 42% of its volume (compared to Earth’s 17%) and the core has a higher iron content than that of any other major planet in the Solar System. Several theories have been proposed to explain this, the most widely accepted being that Mercury was once a larger planet that was struck by a planetesimal that stripped away much of the original crust and mantle.

Internal structure of Mercury: 1. Crust: 100–300 km thick 2. Mantle: 600 km thick 3. Core: 1,800 km radius. Credit: MASA/JPL

Surface Features:

In terms of its surface, Mercury is much more like the Moon than Earth. It has a dry landscape pockmarked by asteroid impact craters and ancient lava flows. Combined with extensive plains, these indicate that the planet has been geologically inactive for billions of years.

Names for these features come from a variety of sources. Craters are named for artists, musicians, painters, and authors; ridges are named for scientists; depressions are named after works of architecture; mountains are named for the word “hot” in different languages; planes are named for Mercury in various languages; escarpments are named for ships of scientific expeditions, and valleys are named after radio telescope facilities.

During and following its formation 4.6 billion years ago, Mercury was heavily bombarded by comets and asteroids, and perhaps again during the Late Heavy Bombardment period. Due to its lack of an atmosphere and precipitation, these craters remain intact billions of years later. Craters on Mercury range in diameter from small bowl-shaped cavities to multi-ringed impact basins hundreds of kilometers across.

The largest known crater is Caloris Basin, which measures 1,550 km (963 mi) in diameter. The impact that created it was so powerful that it caused lava eruptions on the other side of the planet and left a concentric ring over 2 km (1.24 mi) tall surrounding the impact crater. Overall, about 15 impact basins have been identified on those parts of Mercury that have been surveyed.

Enhanced-color image of Munch, Sander and Poe craters amid volcanic plains (orange) near Caloris Basin. Credit: NASA/JHUAPL/Carnegie Institution of Washington

Earth’s surface, meanwhile, is significantly different. For starters, 70% of the surface is covered in oceans while the areas where the Earth’s crust rises above sea level forms the continents. Both above and below sea level, there are mountainous features, volcanoes, scarps (trenches), canyons, plateaus, and abyssal plains. The remaining portions of the surface are covered by mountains, deserts, plains, plateaus, and other landforms.

Mercury’s surface shows many signs of being geologically active in the past, mainly in the form of narrow ridges that extend up to hundreds of kilometers in length. It is believed that these were formed as Mercury’s core and mantle cooled and contracted at a time when the crust had already solidified. However, geological activity ceased billions of years ago and its crust has been solid ever since.

Meanwhile, Earth is still geologically active, owning to convection of the mantle. The lithosphere (the crust and upper layer of the mantle) is broken into pieces called tectonic plates. These plates move in relation to one another and interactions between them is what causes earthquakes, volcanic activity (such as the “Pacific Ring of Fire“), mountain-building, and oceanic trench formation.

Atmosphere and Temperature:

When it comes to their atmospheres, Earth and Mercury could not be more different. Earth has a dense atmosphere composed of five main layers – the Troposphere, the Stratosphere, the Mesosphere, the Thermosphere, and the Exosphere. Earth’s atmosphere is also primarily composed of nitrogen (78%) and oxygen (21%) with trace concentrations of water vapor, carbon dioxide, and other gaseous molecules.

The Fast Imaging Plasma Spectrometer on board MESSENGER has found that the solar wind is able to bear down on Mercury enough to blast particles from its surface into its wispy atmosphere. Credit: Shannon Kohlitz, Media Academica, LLC

Because of this, the average surface temperature on Earth is approximately 14°C, with plenty of variation due to geographical region, elevation, and time of year. The hottest temperature ever recorded on Earth was 70.7°C (159°F) in the Lut Desert of Iran, while the coldest temperature was -89.2°C (-129°F) at the Soviet Vostok Station on the Antarctic Plateau.

Mercury, meanwhile, has a tenuous and variable exosphere that is made up of hydrogen, helium, oxygen, sodium, calcium, potassium and water vapor, with a combined pressure level of about 10-14 bar (one-quadrillionth of Earth’s atmospheric pressure). It is believed this exosphere was formed from particles captured from the Sun, volcanic outgassing and debris kicked into orbit by micrometeorite impacts.

Because it lacks a viable atmosphere, Mercury has no way to retain the heat from the Sun. As a result of this and its high eccentricity, the planet experiences far more extreme variations in temperature than Earth does. Whereas the side that faces the Sun can reach temperatures of up to 700 K (427° C), the side that is in darkness can reach temperatures as low as 100 K (-173° C).

Despite these highs in temperature, the existence of water ice and even organic molecules has been confirmed on Mercury’s surface. The floors of deep craters at the poles are never exposed to direct sunlight, and temperatures there remain below the planetary average. In this respect, Mercury and Earth have something else in common, which is the presence of water ice in its polar regions.

Mercury’s Magnetic Field. Credit: NASA

Magnetic Fields:

Much like Earth, Mercury has a significant, and apparently global, magnetic field, one which is about 1.1% the strength of Earth’s. It is likely that this magnetic field is generated by a dynamo effect, in a manner similar to the magnetic field of Earth. This dynamo effect would result from the circulation of the planet’s iron-rich liquid core.

Mercury’s magnetic field is strong enough to deflect the solar wind around the planet, thus creating a magnetosphere. The planet’s magnetosphere, though small enough to fit within Earth, is strong enough to trap solar wind plasma, which contributes to the space weathering of the planet’s surface.

All told, Mercury and Earth are in stark contrast. While both are terrestrial in nature, Mercury is significantly smaller and less massive than Earth, though it has a similar density. Mercury’s composition is also much more metallic than that of Earth, and its 3:2 orbital resonance results in a single day being twice as long as a year.

But perhaps most stark of all are the extremes in temperature variations that Mercury goes through compared to Earth. Naturally, this is due to the fact that Mercury orbits much closer to the Sun than the Earth does and has no atmosphere to speak of. And its long days and long nights also mean that one side is constantly being baked by the Sun, or in freezing darkness.

We have written many stories about Mercury on Universe Today. Here’s Interesting Facts About Mercury, What Type of Planet is Mercury?, How Long is a Day on Mercury?, The Orbit of Mercury. How Long is a Year on Mercury?, What is the Surface Temperature of Mercury?, Water Ice and Organics Found at Mercury’s North Pole, Characteristics of Mercury,, Surface of Mercury, and Missions to Mercury

If you’d like more information on Mercury, check out NASA’s Solar System Exploration Guide, and here’s a link to NASA’s MESSENGER Misson Page.

We have also recorded a whole episode of Astronomy Cast that’s just about planet Mercury. Listen to it here, Episode 49: Mercury.

Sources: