This Crater on Mars Traps the Cold, and Remains Filled With Ice, All Year Round

This image from ESA’s Mars Express shows Korolev crater, an 82-kilometre-across feature found in the northern lowlands of Mars. Credit: ESA/DLR/FU Berlin

On June 2nd, 2003, the European Space Agency’s Mars Express mission left Earth to begin its journey to Mars. Six months later (on December 25th) the spacecraft fired its main engine and entered orbit around Mars. This Christmas will therefore mark the fifteenth anniversary of the orbiter’s arrival and all the observations it has made of the Red Planet since then.

Appropriately, the Mars Express mission was able to commemorate this occasion by capturing some beautiful photos of a Martian crater that remains filled with ice all year round. This feature is known as the Korolev crater, which measures 82 km (51 mi) in diameter and is located in the northern lowlands, just south of the northern polar ice cap.

Continue reading “This Crater on Mars Traps the Cold, and Remains Filled With Ice, All Year Round”

Remember the Discovery of Methane in the Martian Atmosphere? Now Scientists Can’t Find any Evidence of it, at all

The Trace Gas Orbiter arrived at Mars in 2016. Credit: ESA

In 2003, scientists from NASA’s Goddard Space Center made the first-ever detection of trace amounts of methane in Mars’ atmosphere, a find which was confirmed a year later by the ESA’s Mars Express orbiter. In December of 2014, the Curiosity rover detected a tenfold spike of methane at the base of Mount Sharp, and later uncovered evidence that Mars has a seasonal methane cycle, where levels peak in the late northern summer.

Since it’s discovery, the existence of methane on Mars has been considered one of the strongest lines of evidence for the existence of past or present life. So it was quite the downer last week (on Dec. 12th) when the science team behind one of the ESA’s ExoMars Trace Gas Orbiter (TGO) spectrometers announced that they had found no traces of methane in Mars’ atmosphere.

Continue reading “Remember the Discovery of Methane in the Martian Atmosphere? Now Scientists Can’t Find any Evidence of it, at all”

Even if Exoplanets Have Atmospheres With Oxygen, it Doesn’t Mean There’s Life There

Artist’s impression of a sunset seen from the surface of an Earth-like exoplanet. Credit: ESO/L. Calçada

In their efforts to find evidence of life beyond our Solar System, scientists are forced to take what is known as the “low-hanging fruit” approach. Basically, this comes down to determining if planets could be “potentially habitable” based on whether or not they would be warm enough to have liquid water on their surfaces and dense atmospheres with enough oxygen.

This is a consequence of the fact that existing methods for examining distant planets are largely indirect and that Earth is only one planet we know of that is capable of supporting life. But what if planets that have plenty of oxygen are not guaranteed to produce life? According to a new study by a team from Johns Hopkins University, this may very well be the case.

Continue reading “Even if Exoplanets Have Atmospheres With Oxygen, it Doesn’t Mean There’s Life There”

Saturn is Losing its Rings, Fast. They Could be Gone Within 100 Million Years

This portrait looking down on Saturn and its rings was created from images obtained by NASA's Cassini spacecraft on Oct. 10, 2013. Credit: NASA/JPL-Caltech/Space Science Institute/G. Ugarkovic

It has been almost forty years since the Voyager 1 and 2 missions visited the Saturn system. As the probes flew by the gas giant, they were able to capture some stunning, high-resolution images of the planet’s atmosphere, its many moons, and its iconic ring system. In addition, the probes also revealed that Saturn was slowly losing its rings, at a rate that would see them gone in about 100 million years.

More recently, the Cassini orbiter visited the Saturn system and spent over 12 years studying the planet, its moons and its ring system. And according to new research based on Cassini’s data, it appears that Saturn is losing its rings at the maximum rate predicted by the Voyager missions. According to the study, Saturn’s rings are being gobbled up by the gas giant at a rate that means they could be gone in less 100 million years.

Continue reading “Saturn is Losing its Rings, Fast. They Could be Gone Within 100 Million Years”

Here are 20 Protoplanetary Disks, With Newly Forming Planets Carving Out Gaps in the Gas and Dust

ALMA's high-resolution images of nearby protoplanetary disks, which are results of the Disk Substructures at High Angular Resolution Project (DSHARP). The observatory is often used to look for planet birth clouds like these and the one around HD 169142. Credit: ALMA (ESO/NAOJ/NRAO), S. Andrews et al.; NRAO/AUI/NSF, S. Dagnello
ALMA's high-resolution images of nearby protoplanetary disks, which are results of the Disk Substructures at High Angular Resolution Project (DSHARP). The observatory is often used to look for planet birth clouds like these and the one around HD 169142. Credit: ALMA (ESO/NAOJ/NRAO), S. Andrews et al.; NRAO/AUI/NSF, S. Dagnello

The hunt for other planets in our galaxy has heated up in the past few decades, with 3869 planets being detected in 2,886 systems and another 2,898 candidates awaiting confirmation. Though the discovery of these planets has taught scientists much about the kinds of planets that exist in our galaxy, there is still much we do not know about the process of planetary formation.

To answer these questions, an international team recently used the Atacama Large Millimeter/submillimeter Array (ALMA) to conduct the first large-scale, high-resolution survey of protoplanetary disks around nearby stars. Known as the Disk Substructures at High Angular Resolution Project (DSHARP), this program yielded high-resolution images of 20 nearby systems where dust and gas was in the process of forming new planets.

Continue reading “Here are 20 Protoplanetary Disks, With Newly Forming Planets Carving Out Gaps in the Gas and Dust”

Rosetta Flew Through the Bow Shock of Comet 67P Several Times During its Mission

Rosetta mission poster showing the deployment of the Philae lander to comet 67P/Churyumov-Gerasimenko.. Credit: ESA/ATG medialab (Rosetta/Philae); ESA/Rosetta/NavCam (comet)

In 2014 , the European Space Agency’s (ESA) Rosetta spacecraft made history when it rendezvoused with Comet 67P/Churyumov-Gerasimenko. This mission would be the first of its kind, where a spacecraft intercepted a comet, followed it as it orbited the Sun, and deployed a lander to its surface. For the next two years, the orbiter would study this comet in the hopes of revealing things about the history of the Solar System.

In this time, Rosetta’s science team also directed the orbiter to look for signs of the comet’s bow shock – the boundary that forms around objects as a result of interaction with solar wind. Contrary to what they thought, a recent study has revealed that Rosetta managed to detect signs of a bow shock around the comet in its early stages. This constitutes the first time in history that the formation of a bow shock has been witnessed in our Solar System. Continue reading “Rosetta Flew Through the Bow Shock of Comet 67P Several Times During its Mission”

Exactly How We Would Send our First Laser-Powered Probe to Alpha Centauri

Artist's impression of the Dragonfly spacecraft concept. Credit and Copyright: David A Hardy (2015)

The dream of traveling to another star system, and maybe even finding populated worlds there, is one that has preoccupied humanity for many generations. But it was not until the era of space exploration that scientists have been able to investigate various methods for making an interstellar journey. While many theoretical designs have been proposed over the years, a lot of attention lately has been focused on laser-propelled interstellar probes.

The first conceptual design study, known as Project Dragonfly was hosted by the Initiative for Interstellar Studies (i4iS) in 2013. The concept called for the use of lasers to accelerate a light sail and spacecraft to 5% the speed of light, thus reaching Alpha Centauri in about a century. In a recent paper, one of the teams that took part in the design competition assessed the feasibility of their proposal for a lightsail and magnetic sail.

Continue reading “Exactly How We Would Send our First Laser-Powered Probe to Alpha Centauri”

Every Few Hours There’s a Flash of Light Coming From the Moon. Another Impact.

Locations of lunar impact flashes detected by the NELIOTA project. Credit: NELIOTA project

Ever since the Apollo missions explored the lunar surface, scientists have known that the Moon’s craters are the result of a long history of meteor and asteroid impacts. But it has only been in the past few decades that we have come to understand how regular these are. In fact, every few hours, an impact on the lunar surface is indicated by a bright flash. These impact flashes are designed as a “transient lunar phenomena” because they are fleeting.

Basically, this means that the flashes (while common) last for only a fraction of a second, making them very difficult to detect. For this reason, the European Space Agency (ESA) created the NEO Lunar Impacts and Optical TrAnsients (NELIOTA) project in 2015 to monitor the moon for signs of impact flashes. By studying them, the project hopes to learn more about the size and distribution of near-Earth objects to determine if they pose a risk to Earth.

Continue reading “Every Few Hours There’s a Flash of Light Coming From the Moon. Another Impact.”

Finally! Voyager 2 is Now in Interstellar Space

NASA's Voyager 2 Probe Enters Interstellar Space This illustration shows the position of NASA's Voyager 1 and Voyager 2 probes, outside of the heliosphere, a protective bubble created by the Sun that extends well past the orbit of Pluto. Voyager 1 exited the heliosphere in August 2012. Voyager 2 exited at a different location in November 2018. Credit: NASA/JPL-Caltech
NASA's Voyager 2 Probe Enters Interstellar Space This illustration shows the position of NASA's Voyager 1 and Voyager 2 probes, outside of the heliosphere, a protective bubble created by the Sun that extends well past the orbit of Pluto. Voyager 1 exited the heliosphere in August 2012. Voyager 2 exited at a different location in November 2018. Credit: NASA/JPL-Caltech

On August 25th, 2012, the Voyager 1 spacecraft accomplished something no human-made object ever had before. After exploring the Uranus, Neptune, and the outer reaches of the Solar System, the spacecraft entered interstellar space. In so doing, it effectively became the most distant object from Earth and traveled further than anyone, or anything, in history.

Well, buckle up, because according to NASA mission scientists, the Voyager 2 spacecraft recently crossed the outer edge of the heliopause – the boundary between our Solar System and the interstellar medium – and has joined Voyager 1 in interstellar space.  But unlike its sibling, the Voyager 2 spacecraft carries a working instrument that will provide the first-ever observations of the boundary that exists between the Solar System and interstellar space.

Continue reading “Finally! Voyager 2 is Now in Interstellar Space”

InSight Uses its Seismometer to “Hear” the Sound of Wind on Mars

One of two Mars InSight's 7-foot (2.2 meter) wide solar panels was imaged by the lander's Instrument Deployment Camera, which is fixed to the elbow of its robotic arm. Credits: NASA/JPL-Caltech

Just two weeks ago, NASA’s Interior Exploration using Seismic Investigations, Geodesy and Heat Transport (InSight) lander touched down on the surface of Mars. In the hours that followed, mission controllers at NASA-JPL received confirmation that the lander had deployed its solar arrays and was commencing scientific operations.

And in what was sure to be a treat for space exploration enthusiasts, the lander recently provided the first ever experience of what it “sounds” like to be on Mars. The sounds were caught by an air pressure sensor inside the lander and the seismometer instrument that is awaiting deployment to the surface. Together, they recorded the low rumble caused by Martian winds that blew around the lander’s location on Dec. 1st.

Continue reading “InSight Uses its Seismometer to “Hear” the Sound of Wind on Mars”