Exploring Lava Tubes on Other Worlds Will Need Rovers That Can Work Together

Artist's rendition of autonomous rovers using the breadcrumb style communication network within a lava tube. They are exploring and collecting data, which is then relayed back to the mother rover at the tube's entrance, which then relays the data to an orbiter or a blimp. (Credit: John Fowler/Wikimedia Commons, Mark Tarbell and Wolfgang Fink/University of Arizona)

Planetary exploration, specifically within our own Solar System, has provided a lifetime of scientific knowledge about the many worlds beyond Earth. However, this exploration, thus far, has primarily been limited to orbiters and landers/rovers designed for surface exploration of the celestial bodies they visit. But what if we could explore subsurface environments just as easily as we’ve been able to explore the surface, and could some of these subsurface dwellings not only shelter future astronauts, but host life, as well?

Continue reading “Exploring Lava Tubes on Other Worlds Will Need Rovers That Can Work Together”

JWST Sees the Same Supernova Three Times in an Epic Gravitational Lens

JWST image with three smaller insets displaying three lensed images comprised of a single background galaxy up close. Supernova candidate AT 2022riv (middle image with parallel lines) is the oldest image, followed by two subsequent images ~320 days after the first image (bottom) and ~1000 days after the first image (top). Neither of the two subsequent images have the supernova present. (Credit: ESA/Webb, NASA & CSA, P. Kelly)

The NASA/European Space Agency (ESA)/Canadian Space Agency (CSA) James Webb Space Telescope (JWST) mission continues to dazzle and amaze with every image it beams back to Earth, and a recent observation depicting not one, not two, but three images of the same galaxy has been no different, as they proudly tweeted on February 28, 2023.

Continue reading “JWST Sees the Same Supernova Three Times in an Epic Gravitational Lens”

Our Best Instruments Couldn’t Find Life on Mars

Jezero Crater (Left; Credit: NASA/JPL-Caltech) and Red Stone Jurassic fossil delta of the Atacama Desert in northwestern Chile (Right; Credit: Dr. Armando Azua-Bustos)

The planet Mars is arguably the most extensively studied planetary body in the entire Solar System, which began with telescopic observations by Galileo Galilei in 1609, with such telescopic observations later being taken to the extreme by Percival Lowell in the late 19th century when he reported seeing what he believed were artificial canals made by an advanced intelligent race of Martians. But it wasn’t until the first close up image of Mars taken by NASA’s Mariner 4 in 1965 that we saw the Red Planet for what it really was: a cold and dead world with no water and no signs of life, whatsoever.

Continue reading “Our Best Instruments Couldn’t Find Life on Mars”

Venus’ Outer Shell is Thinner and “Squishier” Than Previously Believed

Artist's illustration of Quetzalpetlatl Corona on Venus displaying both active volcanism and a subduction zone. (Credit: NASA/JPL-Caltech/Peter Rubin)

While Earth and Venus are approximately the same size and both lose heat at about the same rate, the internal mechanisms that drive Earth’s geologic processes differ from its neighbor. It is these Venusian geologic processes that a team of researchers led by NASA’s Jet Propulsion Laboratory (JPL) and the California Institute of Technology hope to learn more about as they discuss both the cooling mechanisms of Venus and the potential processes behind it.

Continue reading “Venus’ Outer Shell is Thinner and “Squishier” Than Previously Believed”

The Planet That Shouldn’t Exist

Artist illustration of TOI-5205b orbiting its parent star. (Artwork Credit: Katherine Cain/Carnegie Institution for Science)

As of this writing, almost 5300 exoplanets spanning approximately 4000 planetary systems have been confirmed to exist in our universe. With each new exoplanet discovery, scientists continue to learn more about planetary formation and evolution that has already shaken our understanding of this process down to its very core. One such example is “Hot Jupiters”, which are Jupiter-sized exoplanets, or larger, that orbit closer to their parents stars than Mercury does to our own. This is in stark contrast to our own Solar System, which has rocky planets closer towards our Sun and the gas giant planets much farther out.

Continue reading “The Planet That Shouldn’t Exist”

Europa Could be Covered in Salty Ice

Jupiter's second Galilean moon, Europa. Its smooth surface has fewer craters than other moons, but they help us understand its icy shell. (Credit: NASA/JPL/Galileo spacecraft)
The Hubble spotted evidence of geysers coming from Jupiter's moon Europa, but nobody's been able to find them again. (Credit: NASA/JPL/Galileo spacecraft)

Jupiter’s second Galilean moon, Europa, is one of the most fascinating planetary objects in our Solar System with its massive subsurface ocean that’s hypothesized to contain almost three times the volume of water as the entire Earth, which opens the possibility for life to potentially exist on this small moon. But while Europa’s interior ocean could potentially be habitable for life, its unique surface features equally draw intrigue from scientists, specifically the large red streaks that crisscross its cracked surface.

Continue reading “Europa Could be Covered in Salty Ice”

Meteorites are Contaminated Quickly When They Reach Earth

Image of an Earth-altered sample of the Winchcombe meteorite; scale bar in micrometers. (Credit: University of Glasgow)

On Earth, geologists study rocks to help better understand the history of our planet. In contrast, planetary geologists study meteorites to help better understand the history of our solar system. While these space rocks put on quite the spectacle when they enter our atmosphere at high speeds, they also offer insights into both the formation and evolution of the solar system and the planetary bodies that encompass it. But what happens as a meteorite traverses our thick atmosphere and lands on the Earth? Does it stay in its pristine condition for scientists to study? How quickly should we contain the meteorite before the many geological processes that make up our planet contaminate the specimen? How does this contamination affect how the meteorite is studied?

Continue reading “Meteorites are Contaminated Quickly When They Reach Earth”

Magnetars are Extreme in Every Way, Even Their Volcanoes

Artist rendition of a magnetar eruption. These could be source of fast radio bursts. (Credit: NASA Goddard Space Flight Center)
Artist rendition of a magnetar eruption. These could be source of fast radio bursts. (Credit: NASA Goddard Space Flight Center)

In a recent study published in Nature Astronomy, an international team of researchers led by NASA and The George Washington University examined data from an October 2020 detection of what’s known as a “large spin-down glitch event”, also known as an “anti-glitch”, from a type of neutron star known as a magnetar called SGR 1935+2154 and located approximately 30,000 light-years from Earth, with SGR standing for soft gamma repeaters. Such events occur when the magnetar experiences a sudden decrease in its rotation rate, which in this case was followed by three types of radio bursts known as extragalactic fast radio bursts (FRBs) and then pulsed radio emissions for one month straight after the initial rotation rate decrease.

Continue reading “Magnetars are Extreme in Every Way, Even Their Volcanoes”

A Green Bank Telescope Prototype Radar System Can Image the Moon in High-Resolution and Detect Asteroids

Prototype radar image zoom-in of Tycho Crater floor in 5-meter resolution detail. (Credit: Raytheon Technologies)

Everyone loves taking pictures of the Moon. Whether it’s with their phones or through the wonders of astrophotography, photographing the Moon reminds us about the wonders and awesomeness of the universe. But while we can take awesome images of the whole Moon from the Earth, it’s extremely difficult to get close-up images of its surface given the enormous distance we are from our nearest celestial neighbor at 384,400 km (238,855 mi). This is because the closer we try to zoom in on its surface, the blurrier, or more pixelated, the images become. Essentially, the resolution of the images becomes worse and worse. But what if we could take high-resolution images of the Moon’s surface from Earth instead of relying on satellites presently in lunar orbit to take them for us?

Continue reading “A Green Bank Telescope Prototype Radar System Can Image the Moon in High-Resolution and Detect Asteroids”

Astronomers still scratching their heads over population of ocean-world exoplanets

Artist rendition of a potential water-world exoplanet that might support advanced civilizations. Such life could advertise its existence via technosignatures from industrial or other activities. (Credit: ESA / Hubble / M. Kornmesser)
Artist rendition of a potential water-world exoplanet that might support life. Scientists could determine whether to explore this world based on its planetary entropy production. (Credit: ESA / Hubble / M. Kornmesser)

In a recent study submitted to The Astrophysical Journal Letters, an international team of researchers led by the University of California, Los Angeles (UCLA) examine the potential for water-worlds around M-dwarf stars. Water-worlds, also known as ocean worlds, are planets that possess bodies of liquid water either directly on its surface, such as Earth, or somewhere beneath it, such as Jupiter’s moon, Europa and Saturn’s moon, Enceladus.

Continue reading “Astronomers still scratching their heads over population of ocean-world exoplanets”