Latest Hubble Image Shows the Star-Forming Chamaeleon Cloud

This is a Hubble composite image of the Chamaeleon I cloud complex. Image Credit: NASA, ESA, K. Luhman and T. Esplin (Pennsylvania State University), et al., and ESO; Processing: Gladys Kober (NASA/Catholic University of America)

Stars form inside vast collections of molecular hydrogen called molecular clouds, sometimes called stellar nurseries or star forming regions. Instabilities in the clouds cause gas to collapse in on itself, and when enough material gathers and the density reaches a critical stage, a star begins its life of fusion.

But molecular clouds aren’t always alone. They often exist in association with other clouds, and astronomers call these formations Cloud Complexes. The Chamaeleon Cloud Complex (CCC) is one of the closest active star forming regions to Earth. It’s further divided into three substructures called dark clouds, or dark nebula. They are Chamaeleon 1 (Cha1), Chamaeleon 2, and Chamaeleon 3.

NASA created a new composite image of Chamaeleon 1 based on Hubble images, and the vivid panorama brings Chamaeleon I to life.

Continue reading “Latest Hubble Image Shows the Star-Forming Chamaeleon Cloud”

A Chinese Space Tug Just Grappled a Dead Satellite

This graphic shows a satellite in geostationary orbit. Image Credit: NASA

A Chinese satellite pulled a defunct navigation satellite out of the way of other satellites on January 22nd. The satellite, called SJ-21, appeared to operate as a space tug when it grappled onto the navigation satellite from the Chinese CompassG2 network. The operation details didn’t come from Chinese authorities but a report by ExoAnalytic Solutions, a commercial space monitoring company.

Chinese authorities are tight-lipped about the operation, but what can observations tell us about Chinese capabilities?

Continue reading “A Chinese Space Tug Just Grappled a Dead Satellite”

During a Solar Flare, Dark Voids Move Down Towards the Sun. Now We Know Why

Solar flares are complex phenomena. They involve plasma, electromagnetic radiation across all wavelengths, activity in the Sun’s atmosphere layers, and particles travelling at near light speed. Spacecraft like NASA’s Solar and Heliophysics Observatory (SOHO) and the Parker Solar Probe shed new light on the Sun’s solar flares.

But it was a Japanese-led mission called Yohkoh that spotted an unusual solar flare in 1999. This flare displayed a downward flowing motion toward the Sun along with the normal outward flow. What caused it?

A team of researchers think they’ve figured it out.

Continue reading “During a Solar Flare, Dark Voids Move Down Towards the Sun. Now We Know Why”

It Turns out, We Have a Very Well-Behaved Star

Our Sun is a Population II star about 5 billion years old. It contains elements heavier than hydrogen and helium, including oxygen, carbon, neon, and iron, though only in tiny percentags. Image: NASA/Solar Dynamics Observatory.
Our Sun is a Population II star about 5 billion years old. It contains elements heavier than hydrogen and helium, including oxygen, carbon, neon, and iron, though only in tiny percentags. Image: NASA/Solar Dynamics Observatory.

Should we thank our well-behaved Sun for our comfy home on Earth?

Some stars behave poorly. They’re unruly and emit powerful stellar flares that can devastate life on any planets within range of those flares. New research into stellar flares on other stars makes our Sun seem downright quiescent.

Continue reading “It Turns out, We Have a Very Well-Behaved Star”

Is the Underground Lake on Mars Just Volcanic Rock?

Ice at Mars' south pole. Image Credit: ESA/DLR/FU Berlin/Bill Dunford

Is Mars home to an underwater lake? Different researchers are reaching different conclusions. Some say remote sensing from the Mars Express orbiter shows liquid water in an underground lake at Mars’ south polar region. Other researchers say clays or minerals explain the data better.

Who’s right? Maybe none of them.

A new study says that volcanic rock can explain the Mars Express data and that it’s a more plausible explanation.

Continue reading “Is the Underground Lake on Mars Just Volcanic Rock?”

The Scientific Debate Rages on: Is there Water Under Mars’ South Pole?

The South Pole on Mars. Image: NASA.
The South Pole on Mars. Image: NASA.

There’s no surface water on Mars now, but there was a long time ago. If you ask most people interested in Mars, what’s left of it is underground and probably frozen.

But some previous evidence shows there’s a lake of liquid water under the planet’s South Pole Layered Deposits (SPLD). Other evidence refutes it. So what’s going on?

Science, that’s what.

Continue reading “The Scientific Debate Rages on: Is there Water Under Mars’ South Pole?”

5,000 Exoplanets!

An artist's illustration of NASA's TESS with Earth and the Moon. Image Credit: NASA

Before NASA’s TESS (Transiting Exoplanet Survey Satellite) mission launched in 2018, astronomers tried to understand what it would find in advance. One study calculated that TESS would find between 4430 and 4660 new exoplanets during its primary two-year-long mission.

The primary mission (PM) is over, and TESS is in its extended mission (EM) now. The extended mission is 1.5 years old, and TESS has discovered 176 confirmed exoplanets and 5164 candidates. Scientists are still going through data from the primary mission, so the data might be hiding many more exoplanets. And TESS isn’t finished yet.

Continue reading “5,000 Exoplanets!”

Incredible Image Shows Twin Stellar Jets Blasting Out of a Star-Forming Region

The sinuous young stellar jet, MHO 2147, meanders lazily across a field of stars in this image captured from Chile by the international Gemini Observatory, a Program of NSF's NOIRLab. The stellar jet is the outflow from a young star that is embedded in an infrared dark cloud. Astronomers suspect its sidewinding appearance is caused by the gravitational attraction of companion stars. These crystal-clear observations were made using the Gemini South telescope’s adaptive optics system, which helps astronomers counteract the blurring effects of atmospheric turbulence. Image Credit: International Gemini Observatory/NOIRLab/NSF/AURA

Young stars go through a lot as they’re being born. They sometimes emit jets of ionized gas called MHOs—Molecular Hydrogen emission-line Objects. New images of two of these MHOs, also called stellar jets, show how complex they can be and what a hard time astronomers have as they try to understand them.

Continue reading “Incredible Image Shows Twin Stellar Jets Blasting Out of a Star-Forming Region”

It’s Been Constantly Raining Meteors on Mars for 600 Million Years. Earth too.

An impact crater on Mars. Image Credit: NASA

New research shows that Mars has faced a constant rain of meteors during the last 600 million years. This finding contradicts previous research showing that the impact rate has varied, with prominent activity spikes. Why would anyone care how often meteors rained down on Mars, a planet that’s been dead for billions of years?

Because whatever Mars was subjected to, Earth was also likely subjected to.

Who wouldn’t want to know our planet’s history?

Continue reading “It’s Been Constantly Raining Meteors on Mars for 600 Million Years. Earth too.”

ESA’s ARIEL Mission Will Study the Atmospheres of More Than 1,000 Exoplanets

The ARIEL mission is a space telescope that will examine the atmospheres of at least 1000 exoplanets. Image Credit: ESA

We found our first exoplanets orbiting a pulsar in 1992. Since then, we’ve discovered many thousands more. Those were the first steps in identifying other worlds that could harbour life.

Now planetary scientists want to take the next step: studying exoplanet atmospheres.

The ESA’s ARIEL mission will be a powerful tool.

Continue reading “ESA’s ARIEL Mission Will Study the Atmospheres of More Than 1,000 Exoplanets”