The Early Solar System was Total Mayhem

An artist's illustration of a chaotic young solar system. Image Credit: Tobias Stierli, flaeck / PlanetS

There’s no question that young solar systems are chaotic places. Cascading collisions defined our young Solar System as rocks, boulders, and planetesimals repeatedly collided. A new study based on chunks of asteroids that crashed into Earth puts a timeline to some of that chaos.

Continue reading “The Early Solar System was Total Mayhem”

Civilizations Don’t Even Need Space Ships to Migrate From Star System to Star System

This artist’s impression shows an example of a rogue planet with the Rho Ophiuchi cloud complex visible in the background. Rogue planets have masses comparable to those of the planets in our Solar System but do not orbit a star, instead roaming freely on their own. Image Credit: ESO/M. Kornmesser/S. Guisard

In about 5 billion years, the Sun will leave the main sequence and become a red giant. It’ll expand and transform into a glowering, malevolent ball and consume and destroy Mercury, Venus, Earth, and probably Mars. Can humanity survive the Sun’s red giant phase? Extraterrestrial Civilizations (ETCs) may have already faced this existential threat.

Could they have survived it by migrating to another star system without the use of spaceships?

Continue reading “Civilizations Don’t Even Need Space Ships to Migrate From Star System to Star System”

Planets in Binary Systems Could be Habitable, But They’d Form Differently

An artist's illustration of a planet orbiting a binary star. Image Credit: ESA/NASA/Hubble

Most of the stars in the Milky Way are single stars. But between one-third and one-half of them are binary stars. Can habitable planets form in these environments?

New research shows that habitable planets could exist around binary stars, but they would form differently than worlds around single stars.

Continue reading “Planets in Binary Systems Could be Habitable, But They’d Form Differently”

“Wind-Ruffled Waves, Foam and Wave Shadows, Above Natural Blue Seawater.” This is how we’ll Spot Exoplanets With Oceans

Artist's depiction of a waterworld. A new study suggests that Earth is in a minority when it comes to planets, and that most habitable planets may be greater than 90% ocean. Credit: David A. Aguilar (CfA)
Artist's depiction of a waterworld. A new study suggests that Earth is in a minority when it comes to planets, and that most habitable planets may be greater than 90% ocean. Credit: David A. Aguilar (CfA)

Our planet’s oceans generate tell-tale light signatures when sunlight reflects off them. Exoplanets with significant ocean coverage may do the same. Can we use the Earth’s reflectance signatures to identify other Earth-like worlds with large oceans?

We should be able to, eventually.

Continue reading ““Wind-Ruffled Waves, Foam and Wave Shadows, Above Natural Blue Seawater.” This is how we’ll Spot Exoplanets With Oceans”

Solar Orbiter’s Pictures of the Sun are Every Bit as Dramatic as You Were Hoping

This is one of the new images of the Sun from the ESA's Solar Orbiter's closest approach on March 26th, 2022. Image Credit: ESA

On March 26th, the ESA’s Solar Orbiter made its closest approach to the Sun so far. It ventured inside Mercury’s orbit and was about one-third the distance from Earth to the Sun. It was hot but worth it.

The Solar Orbiter’s primary mission is to understand the connection between the Sun and its heliosphere, and new images from the close approach are helping build that understanding.

Continue reading “Solar Orbiter’s Pictures of the Sun are Every Bit as Dramatic as You Were Hoping”

Maybe We Don’t Hear From Aliens Because They Choose To Go Silent

Artist impression of an alien civilization. Image credit: CfA

How will humanity meet its end?

That’s only a depressing question if you think that humanity will go on forever. Alas, nothing lasts forever, and if something could last forever, it probably wouldn’t be our struggling primate species.

But we’ll likely be around for a while yet, pondering things as we do. One of the things we love to ponder is: why don’t we hear from any other alien civilizations?

Continue reading “Maybe We Don’t Hear From Aliens Because They Choose To Go Silent”

Ceres Probably Formed Farther out in the Solar System and Migrated Inward

This image of Ceres was taken by NASA's Dawn spacecraft on May 7, 2015, from a distance of 8,400 miles (13,600 kilometers). Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

When Sicilian astronomer Giuseppe Piazzi spotted Ceres in 1801, he thought it was a planet. Astronomers didn’t know about asteroids at that time. Now we know there’s an enormous quantity of them, primarily residing in the main asteroid belt between Mars and Jupiter.

Ceres is about 1,000 km in diameter and accounts for a third of the mass in the main asteroid belt. It dwarfs most of the other bodies in the belt. Now we know that it’s a planet—albeit a dwarf one—even though its neighbours are mostly asteroids.

But what’s a dwarf planet doing in the asteroid belt?

Continue reading “Ceres Probably Formed Farther out in the Solar System and Migrated Inward”

Astronomers Find a Star That Contains 65 Different Elements

This is an image of M80, an ancient globular cluster of stars. Since these stars formed in the early universe, their metallicity content is very low. This means that gas giants like Jupiter would be rare or non-existent here, while brown dwarfs are likely plentiful. Image: By NASA, The Hubble Heritage Team, STScI, AURA - Great Images in NASA Description, Public Domain, https://commons.wikimedia.org/w/index.php?curid=6449278
This is an image of M80, an ancient globular cluster of stars. Since these stars formed in the early universe, their metallicity content is very low. This means that gas giants like Jupiter would be rare or non-existent here, while brown dwarfs are likely plentiful. Image: By NASA, The Hubble Heritage Team, STScI, AURA - Great Images in NASA Description, Public Domain, https://commons.wikimedia.org/w/index.php?curid=6449278

Have you ever held a chunk of gold in your hand? Not a little piece of jewelry, but an ounce or more? If you have, you can almost immediately understand what drives humans to want to possess it and know where it comes from.

We know that gold comes from stars. All stars are comprised primarily of hydrogen and helium. But they contain other elements, which astrophysicists refer to as a star’s metallicity. Our Sun has a high metallicity and contains 67 different elements, including about 2.5 trillion tons of gold.

Now astronomers have found a distant star that contains 65 elements, the most ever detected in another star. Gold is among them.

Continue reading “Astronomers Find a Star That Contains 65 Different Elements”

Scouring Through old Hubble Images Turned up 1,000 new Asteroids

The curved streaks in this Hubble image are asteroids, and some of them are previously unknown. Image Credit: NASA/ESA/Hubble

Researchers have found over 1,700 asteroid trails in archived Hubble data from the last 20 years. While many of the asteroids are previously known, more than 1,000 are not. What good are another 1,000 asteroids? Like all asteroids, they could hold valuable clues to the Solar System’s history.

Continue reading “Scouring Through old Hubble Images Turned up 1,000 new Asteroids”

We’ve Now Seen Planet-Forming Disks Around Hundreds of Young Stars. What Do They Tell Us?

ALMA's high-resolution images of nearby protoplanetary disks, which are results of the Disk Substructures at High Angular Resolution Project (DSHARP). The observatory is often used to look for planet birth clouds like these and the one around HD 169142. Credit: ALMA (ESO/NAOJ/NRAO), S. Andrews et al.; NRAO/AUI/NSF, S. Dagnello
ALMA's high-resolution images of nearby protoplanetary disks, which are results of the Disk Substructures at High Angular Resolution Project (DSHARP). The observatory is often used to look for planet birth clouds like these and the one around HD 169142. Credit: ALMA (ESO/NAOJ/NRAO), S. Andrews et al.; NRAO/AUI/NSF, S. Dagnello

Is our Solar System comparable to other solar systems? What do other systems look like? We know from exoplanet studies that many other systems have hot Jupiters, massive gas giants that orbit extremely close to their stars. Is that normal, and our Solar System is the outlier?

One way of addressing these questions is to study the planet-forming disks around young stars to see how they evolve. But studying a large sample of these systems is the only way to get an answer. So that’s what a group of astronomers did when they surveyed 873 protoplanetary disks.

Continue reading “We’ve Now Seen Planet-Forming Disks Around Hundreds of Young Stars. What Do They Tell Us?”