An Awesome Annular Eclipse! Images and Videos from Earth and Space

A spectacular annular eclipse of the Sun was witnessed across Australia and the southern Pacific region early today. Morning dawned mostly clear across the Australian continent, and those who journeyed out to meet the antumbra of the Moon as the Sun rose across the Great Sandy Desert and the Cape York Peninsula were not disappointed. The rest of us watched worldwide on as Slooh and a scattering of other ad-hoc broadcasts delivered the celestial event to us via the web.

This was a challenging one. Although partial phases of the eclipse was visible across the entirety of Australia, Hawaii, and as far north as the Philippines and as far south as New Zealand, the track of annularity passed over some very remote locales. Stable Internet connections were scarce, and many photos and videos are still trickling in as die-hard eclipse chasers return “from the Bush.”

One lucky witness to the eclipse was Druce Horton (Xylopia on flickr) who caught the eclipse from Kuranda, Australia just north of Cairns. “It was completely clouded over here in Kuranda and I didn’t even bother going to a place where I could get a clear view.” Druce told Universe Today. “I then noticed the sky lightening a little and I rushed out with the camera and desperately tried to set an appropriate exposure and frame it while avoiding getting an eyeful of sunlight and/or a tree branch in the way.”

As seen by Druce Horton near Kurunda, Australia.
A rising crescent eclipse as seen by Druce Horton near Kurunda, Australia. (Credit and Copyright: Druce Horton. Used with Permission).

As pointed out the us by Michael Zeiler (@EclipseMaps) earlier this week, the town of Newman and surrounding regions in Western Australia were a great place to witness the rising annular eclipse. Geoffrey Sims ventured out and did just that:

The rising annular eclipse. (Credit: Geoff Sims).

Note how the atmospheric haze is distorting the solar annulus into a flattened ring… pure magic! Mr. Sims got some truly stunning pictures of the eclipse, and was one of the first to manage to get them out onto the Internet, though he stated on Twitter that it “will likely take weeks to sort through the images!”

All get reasons to keep a close eye on Mr. Sims’ Facebook page

Mr. Joerg Schoppmeyer also ventured about 70 kilometres south of Newman to catch the rising “Ring of Fire”:

Annularity just moments after internal contact of the antumbra. Credit:
Annularity just moments after internal contact of the antumbra. Credit: Joerg Schoppmeyer).

We also mentioned earlier this week how you can use the “strainer effect” to create a flock of crescent Suns during a partial solar eclipse.

Amanda Bauer (@astropixie) of Sydney, Australia did just this to create her name in “eclipse pacmans”:

An Astropixie Eclipse… (Credit: Amanda Bauer).

And speaking of which, eclipse crescents can turn up in the most bizarre of places, such as a lens flare caught by a webcam based at the Canberra Deep Space Network:

Credit: NASA
A lens flare eclipse. (Credit: CDSCC/NASA).

Trevor Sellman (@tsellman) based in northern Melbourne preferred to catch sight of the partial phase of the eclipse “the old fashioned way,” via a simple pinhole projection onto a white sheet of paper:

A pinhole eclipse. (Credit: Trevor Sellman).

In addition to Slooh, the Mead West Vaco Observatory in conjunction with the Columbus State University’s Coca-Cola Space Science Center provided an excellent webcast of the full phases of the eclipse, and in multiple wavelengths to boot:

The solar annulus as seen near mid-eclipse in hydrogen alpha. (Credit: the CCSSC).

And they also provided a view in Calcium-K:

Screen cap in Cal-K
A screen capture of the final stage of the eclipse as seen in Cal-K. (Credit: the CCSSC).

But Earth bound-observers weren’t the only ones on hand to witness this eclipse. Roskosmos also released a video animation of the antumba of the Moon crossing the Earth as seen from the Elektro-L satellite:

“These images interest Russian space enthusiasts because we asked  Roskosmos to optimize (the) work of satellite for best pictures of eclipse,” Vitaliy Egorov told Universe Today.

There’s no word as of yet if the NASA/JAXA spacecraft Hinode or if ESA’s Proba-2 caught the eclipse, although they were positioned to take advantage of the opportunity.

There were also some active sunspot regions on the Earthward face of the Sun, as captured by Monty Leventhal in this outstanding white-light filtered image:


Another fine video animation of the eclipse turned up courtesy of Steve Swayne of Maleny in Queensland, Australia;

And finally, Vanessa Hill caught the partial stage of the eclipse while observing from the CSIRO Astrophysics & Space Sciences viewing event:

A partially eclipsed Sun. (Credit: @nessyhill).

Partial stages of the eclipse were also captured by Carey Johnson (@TheTelescopeGuy) from Hawaii and can be viewed on his flickr page.

If this eclipse left you jonesin’ for more, there’s a hybrid solar eclipse across the Atlantic and central Africa on November 3rd 2013. Maximum totality for this eclipse is 1 minute and 40 seconds. Unfortunately, after two solar eclipses in 6 months, another total solar eclipse doesn’t grace the Australian continent until July 22nd, 2028!

But such are the ways of the cosmos and celestial mechanics… hey, be glad we occupy a position in space and time where solar eclipses can occur.

Thanks to all who sent in photos… if you’ve got a picture of today’s eclipse, an anecdote, or just a tale of triumph and/or eclipse chasing tribulations drop us a line & share those pics up to the Universe Today flickr group. See you next syzygy, and may all your eclipse paths be clear!



Amateur Astronomer Catches Record Setting Gamma-Ray Burst

Vigilance and a little luck paid off recently for an amateur astronomer.

On April 27th, 2013 a long lasting gamma-ray burst was recorded in the northeastern section of the constellation Leo. As reported here on Universe Today, the burst was the most energetic ever seen, peaking at about 94 billion electron volts as seen by Fermi’s Large Area Telescope. In addition to Fermi’s Gamma Ray Burst Monitor, the Swift satellite and a battery of ground based instruments also managed to quickly swing into action and record the burst as it was underway.

Patrick Wiggins' capture of the optical counterpart to GRB 130427A with extrapolated light curve. Note that the Moon was just two days past Full in the direction of the constellation Libra at the time, hence the sky glow! (Credit: Patrick Wiggins).
Patrick Wiggins’ capture of the optical counterpart to GRB 130427A with extrapolated light curve. Note that the Moon was just two days past Full in the direction of the constellation Libra at the time, hence the sky glow! (Credit: Patrick Wiggins).

But professionals weren’t the only ones to capture the event. Amateur astronomer Patrick Wiggins was awake at the time, doing routine observations from his observatory based near Toole, Utah when the alert message arrived. He quickly swung his C-14 telescope  into action at the coordinates of the burst at 11 Hours 32’ and 33” Right Ascension and +27° 41’ 56” declination.

Wiggins then began taking a series of 60-second exposures with his SBIG ST-10XME imager and immediately found something amiss. A 13th magnitude star had appeared in the field. At first, Wiggins believed this was simply too bright to be a gamma-ray burst transient, but he continued to image the field into the morning of April 27th.

Wiggins had indeed caught his optical prey, the very first gamma-ray burst he’d captured. And what a burst it was. At only 3.6 billion light years distant, GRB 130427A (gamma-ray bursts are named after the year-month-day of discovery) was one for the record books, and in the top five percent of the closest bursts ever observed.

Mr. Wiggins further elaborated the fascinating story of the observation to Universe Today:

“I was imaging an area near where the burst occurred and received an email GCN Circular and a GCN/SWIFT Notice of the event within minutes of it happening.  As bad luck would have it I was in the kitchen fixing a late night snack when both arrived so I was about 10 minutes late reading them.

I figured that 10 minutes was way too late as these things typically only last a minute or two but I slewed to the coordinates indicated in the notices and shot a quick picture.  There was a bright “something” in the middle of the frame as shown here with the POSS comparison image:”

POSS comparison image of the field of GRB 130427A. (Credit: Partick Wiggins).
POSS comparison image of the field of GRB 130427A. (Credit: Partick Wiggins).

But I thought it looked way too bright for a GRB so I moved the telescope slightly (to see if the object was a ghost or an artifact in the system) and shot again but it was still there.

A quick check of the POSS showed nothing should be there so I started shooting pictures at five minute intervals until dawn and it was those images I used to put together the light curve:”

Expanded light curve of GRB 130427A. (Credit: Patrick Wiggins).
Expanded light curve of GRB 130427A. (Credit: Patrick Wiggins).

Amazingly, the RAPTOR (RAPid Telescopes for Optical Response) array recorded a peak brightness in optical wavelengths of magnitude +7.4 just less than a minute before the Swift spacecraft swung into action. This is just below the dark sky limiting naked-eye magnitude of +6. This is also just below the record optical brightness set by GRB 080319B, which briefly reached magnitude +5.3 back in 2008.

RAPTOR-K & RAPTOR-T based at the Fenton Hill Observatory in New Mexico. (Credit: NNSA/Los Alamos National Laboratory/Dept. of Energy).
RAPTOR-K & RAPTOR-T based at the Fenton Hill Observatory in New Mexico. (Credit: NNSA/Los Alamos National Laboratory/Dept. of Energy).

RAPTOR is run by the Los Alamos National Laboratory and is based at Fenton Hill Observatory in the Jemez Mountains of New Mexico 56 kilometres west of Los Alamos.

The Catalina Real-Time Transient Survey based outside of Tucson Arizona also detected the burst independently, giving it the designation CSS130502: 113233+274156. The burst occurred less than a degree from the +13th magnitude galaxy NGC 3713, and the galaxy SDSS J113232.84+274155.4 is also very close to the observed position of the burst.

Mr. Wiggins’ observation also raises an intriguing possibility. Did anyone catch a surreptitious image of the burst? Anyone wide-field imaging right around the three-way junction of the constellations Ursa Major, Leo & Leo Minor at the correct time might just have caught GRB 130427A in the act. Make sure to review those images!

Follow up observations of gamma-ray bursts are just one of the ways that amateur backyard observers continue to contribute to the science of astronomy. Observers such as Mr. Wiggins and James McGaha based at the Grasslands Observatory near Sonita, Arizona routinely swing their equipment into action chasing after optical transients as alert messages for gamma-ray events are received.

Gamma-ray bursts where first discovered in 1967 by the Vela spacecraft designed to monitor nuclear weapons testing during the Cold War. They come in two varieties: short period and long duration bursts. Short period bursts of less than two seconds duration are thought to occur when a binary pulsar pair merges, while long duration bursts such as GRB 130427A occur when a massive red giant star undergoes a core collapse and shoots a high energy jet directly along its poles in a hypernova explosion. If the burst is aimed in our direction, we get to see the event. Thankfully, no possible progenitors of a long duration gamma-ray burst lie aimed at us in our galaxy, though the Wolf-Rayet stars Eta Carinae and WR 104 both about 8,000 light years distant are worth keeping an eye on. Luckily, neither of these massive stars is known to have rotational poles tipped in our general direction.

Scary stuff to consider as we hunt for the next “Big One” in the night sky. In the meantime, we’ve got much to learn from gamma-ray bursts such as GRB 130427A. Congrats to Mr. Wiggins on his first gamma-ray burst observation… the event was made all the more special by the fact that it occurred on his birthday!

-Mr Patrick Wiggins is NASA/JPL Ambassador to the state of Utah.

– Read the American Association of Variable Star Observers (AAVSO) report of the light curve of GRB 130427A as reported by Mr. Wiggins here.

– NASA’s Goddard Space Flight Center maintains a clearing house of the latest GRB alerts in near-real-time here.

– You can also now receive GRB alerts via @Gammaraybursts on Twitter, as well as follow NASA’s Swift and Fermi missions.

– And of course, “there’s an App for that” in the world of GRB alerts in the form of the free Swift Explorer App for the Iphone.

How to Catch This Week’s ‘Ring of Fire’ Annular Eclipse

The first solar eclipse of 2013 is upon us this week, with the May 10th annular eclipse crossing northern Australia and the Pacific.

2013 is an off year for eclipses. There are five eclipses this year, three lunars and two solars. Last month’s very shallow partial lunar eclipse set us up for the annular that occurs this week. In fact, the theoretical mid-point for the first of two eclipse seasons for 2013 occurs on May 7th at 7:00 UT/ 3:00 EDT when the longitude of the Sun equals the descending node where the Moon’s path crosses the ecliptic. This further sets us up for the third and weakest eclipse of the year, a grazing penumbral on May 25th.

Animation of the path of this week's annular solar eclipse. (Credit: NASA/GSFC/A.T. Sinclair).
Animation of the path of this week’s annular solar eclipse. (Credit: NASA/GSFC/A.T. Sinclair).

An annular eclipse occurs when the Moon eclipses the Sun while near apogee and is hence visually too small to entirely cover the Sun.

The Moon reaches apogee on May 13th at 13:32 UT/9:32AM EDT at 405,826 kilometres from Earth, just 3 days and 13 hours past New.

Annulars are currently more common than total solar eclipses, occurring 33.2% of the time in our current 5,000 year epoch versus 26.7% for total solar eclipses. The remainders are hybrid and partial eclipses. Annulars will become even more common as our Moon recedes from us at a current rate of about 3.8 centimetres a year. In about 1.4 billion years, the final brief total solar eclipse as seen from the Earth will occur. Likewise, somewhere back about 900 million years ago, the very first annular eclipse as seen from the Earth occurred.

Solar viewing with a properly  fitted glass white light filter over the aperture of a Schmidt-Cassegrain telescope. (Photo by Author).
Solar viewing with a properly fitted glass white light filter over the aperture of a Schmidt-Cassegrain telescope. (Photo by Author).

Safety is paramount while viewing an annular solar eclipse. As mentioned above, an annular eclipse throughout all phases is much brighter than you’d expect. Thus precautions to protect your eyes MUST be taken throughout ALL phases of the eclipse. Permanent eye damage can result from staring at the Sun without proper protection, and this can be near instantaneous when done through an unfiltered telescope!

We witnessed the 1994 annular eclipse from the shores of Lake Erie, and can tell you that 5% of the Sun is still extremely bright. You wouldn’t even know an annular eclipse was underway at midday unless you were looking for it. Use only filters approved for eclipse viewing that fit snugly over the FRONT of your optics. Throw those old eyepiece screw-on filters away, as they can heat up and crack!

Check filters before use and never leave a telescope aimed at the Sun unattended. Projecting the Sun is another option via a telescope or “Sun Gun,” but again, never leave such a rig unattended, and keep finderscopes covered at all times. Also, telescopes with folded optical paths such as Schmidt-Cassegrains can heat up to dangerous levels and should not be used for projecting the Sun.

The path of the May 9th/10th annular eclipse across Australia & the Pacific. (Map courtesy of Michael Zeiler at Eclipse Maps, click to enlarge).
The path of the May 9th/10th annular eclipse across Australia & the Pacific. (Map courtesy of Michael Zeiler at Eclipse Maps, click to enlarge).

This eclipse has a magnitude rating of 0.9544, meaning that 95.44% of the diameter of the Sun will be eclipsed at its maximum. Keep in mind, this leaves about 8.9% percent of the Sun, or about 1/11th of its visual area exposed. This translates to only a 2.5 magnitude drop in brightness. Thus, the brightness of the Sun will drop from magnitude -27 to -24.5, still well over 25,000 times brighter than the Full Moon!

Note that this one crosses the International dateline as well.

The action for this eclipse begins as the partial phases touch down over Western Australia at sunrise at 21:25 UT on May 9th (The morning of May 10th in Australia). The annulus makes its appearance at 22:30 UT over western Australia, with its 172 kilometre wide track racing to the northeast over Tennant Creek in the Northern Territories and crossing the Cape York peninsula as it crisscrosses the path of last November’s total solar eclipse just north of Cairns.

A closeup of the path of the annular eclipse across Australia, click to enlarge. (Courtesy of Miichael Zeiler at Eclipse Maps).
A closeup of the path of the annular eclipse across Australia, click to enlarge. (Courtesy of Miichael Zeiler at Eclipse Maps).

Note that the eclipse will be 80% partial near Alice Springs and Uluru (Ayers Rock), presenting an excellent photo op. Michael Zeiler at Eclipse Maps also points out that the area near the town of Newman in Western Australia will see an amazing sunrise annular eclipse. The path of the annular eclipse will then traverse the Coral Sea crossing over islands in eastern Papua New Guiana, the Solomon Islands and Kiribati before reaching greatest annularity with a duration of 6 minutes and 3 seconds at latitude 2° 13’ north and longitude 175° 28’ east. The path of annularity crosses over Bairiki Atoll and makes last landfall over Fanning Island north of Kiribati. Note that most of Australia, New Zealand, Indonesia and the Philippines will see partial phases of the eclipse. The islands of Hawaii across the dateline will also see a 40-50% partial eclipse on May 9th before the event ends in the eastern Pacific at 03:25:23 UT.

Weather prospects for the eclipse look to be best along the track through Australia with less than 20% chance of cloud cover then getting progressively worse as the eclipse path tracks northeastward out to sea. The Solomon Islands region can expect cloud cover in the 60% range, while in Hawaii prospects are about 70%. Eclipser maintains a site dedicated to weather prospects for upcoming eclipses.

Solar activity is currently moderate, with several sunspot groups currently turned Earthward making for a photogenic Sun on eclipse day;

Sunspot activity as of May 5th. (Photo by Author).
Sunspot activity as of May 5th. (Photo by Author).

This eclipse belongs to saros series 138 and is number 31 of 70. This saros started with a 2% partial solar eclipse on June 6th, 1472 and will end with a 12% partial on July 11th,2716 AD having produced 3 total, 1 hybrid, 16 partial and 50 annular eclipses.

Fans of this saros may remember the last annular in this series which crossed South America on April 29th, 1995.

A sequence of eclipse pictures taken from Huntington Beach, California on May 20th, 2012. (Credit: jimnista/Universe Today flickr gallery).
A sequence of eclipse pictures taken from Huntington Beach, California on May 20th, 2012. (Credit: jimnista/Universe Today flickr gallery).

Catching a rising annular eclipse can also make for a stunning photograph. To catch the eclipse and the foreground horizon in silhouette, a DSLR with a 400mm lens running at 1/500th of a second shutter speed or faster is a good combination. Remember, you’ll have to aim this via projection. DO NOT look through the camera at the Sun! Exposures slower than 1/200th of a second are also out of the question, as you can damage the camera sensor at slow exposures.

Another cool effect to watch for is the appearance of tiny little “crescent Suns” littering the ground as sunlight streams through gaps in the tree leaves. This occurs because the gaps act like tiny little pinhole cameras.  A spaghetti strainer is also a highly scientific apparatus that can be used to mimic this effect!

Several solar observing satellites, including Hinode and the European Space Agency’s Proba-2 are poised to catch multiple partial solar eclipses on May 9th and 10th. We ran simulations of these this weekend:

Finally, if you’re like 99.99% of humanity, you’ll be watching this eclipse online. Slooh will be broadcasting this eclipse live.

Also, the eclipse will be broadcast live via the Coca-Cola Space Science Center starting at 5PM ET.

Amateur astronomer Geoff Sims @beyond_beneath will be tweeting near real time images of the eclipse from the path of annularity. Colin Legg (@colinleggphoto) will also be observing the event. Also check out:

-Australian observer Gerard Lazarus’s live feed of the eclipse.

3News in New Zealand and Sky News Australia for eclipse coverage.

Got an ad hoc eclipse broadcast planned? Let us know and we’ll include it!

The next and final solar eclipse for 2013 is a hybrid (annular along one section of the path and total along another) on November 3rd across the mid-Atlantic and central Africa. Another annular eclipse doesn’t occur until April 29th 2014, and the next total solar eclipse occurs on March 20th, 2015.

If you’re in the region be sure to catch this rare celestial event in person, or watch the action worldwide online!


Into Oblivion: What If the Earth Had No Moon?

AVAST gentle reader: mild SPOILER(S) and graphic depictions of shattered satellites ahead!

We recently had a chance to catch Oblivion, the first summer blockbuster of the season. The flick delivers on the fast-paced Sci-Fi action as Tom Cruise saves the planet from an invasion of Tom Cruise clones.

But the movie does pose an interesting astronomical question: what if the Earth had no large moon? In the movie, aliens destroy the Earth’s moon, presumably to throw our planet into chaos. You’d think we’d already be outclassed by the very definition of a species that could accomplish such a feat, but there you go.

Would the elimination of the Moon throw our planet into immediate chaos as depicted in the film? What if we never had a large moon in the first place? And what has our nearest natural neighbor in space done for us lately, anyway?

Earth is unique among rocky or terrestrial planets in that it has a relatively large moon. The Moon ranks 5th in diameter to other solar system satellites. It is 27% the diameter of our planet, but only just a little over 1/80th in terms of mass.

Clearly, the Moon has played a role in the evolution of life on Earth, although how necessary it was isn’t entirely clear. Periodic flooding via tides would have provided an initial impetus to natural selection, driving life to colonize the land. Many creatures such as sea turtles take advantage of the Full Moon as a signal to nest and breed, although life is certainly resilient enough to find alternative methods.

The 2000 book Rare Earth by Peter Ward and Donald Brownlee cites the presence of a large moon as just one of the key ingredients necessary in the story of the evolution of life on Earth. A Moon-less Earth is also just one of the alternative astronomical scenarios cited by Arthur Upgreen in his 2005 book Many Skies.

Save our satellite: A possible target for an alien attack? (Photo by author).
Save our satellite: A possible target for an alien attack? (Photo by author).

Contrary to its depiction on film, the loss of the Moon wouldn’t throw the Earth into immediate chaos, though the long term changes could be catastrophic. For example, no study has ever conclusively linked the Moon to the effective prediction of terrestrial volcanism and earthquakes, though many have tried. (Yes, we know about the 2003 Taiwanese study, which found a VERY weak statistical signal).

All of that angular momentum in the Earth-Moon system would still have to go somewhere. Our Moon is slowly “braking” the rotation of the Earth to the tune of about 1 second roughly every 67,000 years. We also know via bouncing laser beams off of retro-reflectors left by Apollo astronauts that the Moon is receding from us by about 3.8 cm a year. The fragments of the Moon would still retain its angular momentum, even partially shattered state as depicted in the film.

The most familiar effect the Moon has on Earth is its influence on oceanic tides. With the loss of our Moon, the Sun would become the dominant factor in producing tides, albeit a much weaker one.

But the biggest role the Moon plays is in the stabilization of the Earth’s spin axis over long scale periods of time.

Milankovitch cycles play a long term role in fluctuations in climate on the Earth. This is the result of changes in the eccentricity, obliquity and precession of the Earth’s axis and orbit. For example, perihelion, or our closest point to the Sun, currently falls in January in the middle of the northern hemisphere winter in the current epoch. The tilt of the Earth’s axis is the biggest driver of the seasons, and this varies from 22.1° to 24.5° and back (this is known as the change in obliquity) over a span of 41,000 years. We’re currently at a value of 23.4° and decreasing.

But without a large moon to dampen the change in obliquity, much wider and unpredictable swings would occur. For example, the rotational axis of Mars has varied over a span of 13 to 40 degrees over the last 10 to 20 million years. This long-term stability is a prime benefit that we enjoy in having a large moon .

Perhaps some astronomers would even welcome an alien invasion fleet intent on destroying the Moon. Its light polluting influence makes most deep sky imagers pack it in and visit the family on the week surrounding the Full Moon.

But I have but two words in defense of saving our natural satellite: No eclipses.

The diamond ring effect as seen during a 2008 total solar eclipse. (Credit: NASA/Exploratorium).
The diamond ring effect as seen during a 2008 total solar eclipse. (Credit: NASA/Exploratorium).

We currently occupy an envious position in time and space where total solar and lunar eclipses can occur.  In fact, Earth is currently the only planet in our solar system from which you can see the Moon snugly fit in front of the Sun during a total lunar eclipse. It’s 1/400th the size of the Sun, which is also very close to 400 times as distant as the Moon. This situation is almost certainly a rarity in our galaxy; perhaps if alien invaders did show up, we could win ‘em over not by sending a nuclear-armed Tom Cruise after ‘em, but selling them on eclipse tours… Continue reading “Into Oblivion: What If the Earth Had No Moon?”

Watch for the Eta Aquarid Meteor Shower this Weekend

An often ignored meteor shower may offer fine prospects for viewing this weekend.

The Eta Aquarid meteors provide a dependable display in early May. With a radiant very near a Y-shaped asterism in northern Aquarius, the Eta Aquarids are one of the very few major showers that provide a decent annual show for southern hemisphere residents.  

This year, the peak of the Eta Aquarids as per the International Meteor Organization (IMO) comes on May 6th at 1:00 UT, or 9:00 PM EDT on May 5th. This favors European longitudes eastward on the morning of Monday, May 6th. The Eta Aquarid radiant rises just a few hours before dawn, providing optimal viewing in the same time frame.

Keep in mind, the shower is active from April 19th to May 28th. Predicting the arrival of the peak of a meteor shower can be an inexact science. North American observers may still see an early arrival of the Eta  Aquarids on May 5th or even the morning of the 4th.

Could “the 4th be with us” at least in terms of meteor shower activity?

The Eta Aquarids are one of two annual meteor showers associated with that most famous of comets: 1P/Halley.  The other shower associated with Halley’s Comet is the October Orionids. This makes it one of the very few periodic comets associated with two established annual meteor showers.

Like the Orionids, the Eta Aquarid meteors have one of the highest atmospheric velocities of any shower, at 66 kilometres per second. Expect short, swift meteors radiating from low in the southeast (or northeast if you’re based south of the equator) a few hours before local dawn.

This year’s ZHR is expected to reach 55. This year also offers outstanding prospects, because the Moon is only a 17% illuminated waning crescent just 4 days from New at the shower’s peak. There’s some thought in the meteor observing community that this shower experiences a cyclical peak every 12 years.

If this is indeed the case, we could be headed towards a mild lull in this shower around the 2014 to 2016 time frame. Performances from the Eta Aquarids over the past few years as per data from the IMO seem to bear this out, with a peak around 2009;

2012=ZHR 69

2011=ZHR 63

2010=No data

2009=ZHR 90


Still, 55 per hour is a respectable shower. Keep in mind, the ZHR stands for the “Zenithal Hourly Rate” and is an ideal number. This is the number of meteors an observer could expect to see under dark skies with no light pollution with the radiant directly overhead. Also, remember that no single observer can monitor the entire sky at once!

This is also one of the last big annual showers of the season until the Perseids in mid-August. The Gamma Delphinids (June 11th) and the June Bootids (Jun 27th and the June Lyrids (June 15th) are the only minor showers in June. July also sees another minor shower radiating from the constellation Aquarius, the Delta Aquarids which peak on July 30th. The daytime Arietids in June would put on a fine annual showing if they didn’t occur in… you guessed it… the daytime.

This weekend’s Eta Aquarids will put on a better display for the southern hemisphere, one of the very few showers for which this is true.

It’s a poorly understood mystery. Why does the northern celestial hemisphere seem to contain a majority of major meteor shower radiants? The Geminids, the Leonids, the Perseids, the Quadrantids… all of these showers approach the Earth from above the celestial equator, and even from above the ecliptic plane. The Eta Aquarids are one of the very few major showers that goes against this trend.

Is it all just a coincidence? Perhaps. Like total solar eclipses, meteor showers are as much a product of our position in time as well as space. New streams are shed as comets visit the inner solar system, some for the very first time. These older trails interact with and are dispersed by subsequent passages near planets. The 12 year fluctuation of the Eta Aquarids is thought to be related to the orbit of Jupiter which has a similar period.

For example, one meteor shower known as the Andromedids was prone to epic storm outbursts until the early 20th century. Now the stream is a mere trickle. Meteor showers evolve over time, and perhaps their seeming affinity for the northern hemisphere of our planet is a mere perception of our epoch. Maybe a future study could discern a bias due to the number of prograde versus retrograde cometary orbits, or perhaps statistical scrutiny could reveal that no such partiality actually exists.

All food for thought as you keep vigil these early May mornings for the meteoric “Drops from the Water Jar…” Be sure to post those meteor pics to the Universe Today’s Flickr forum, report those meteor counts to the International Meteor Organization, and tweet those fireball sightings to #Meteorwatch!

Debunking Comet ISON Conspiracy Theories (No, ISON is Not Nibiru)

Comets always seem to bring ‘em out of the wood work.

There’s a scene from the 1998 movie Deep Impact where the president, played by Morgan Freeman, reveals a terrible truth… the U.S. government has known for over a year that a doomsday comet is headed straight towards Earth, with Hollywood CGI destruction sure to follow.

While dramatic, the scenario is also extremely implausible. On any given evening, amateur astronomers are sweeping the skies using telescopes mounted in backyard observatories that are the envy of many major universities. This effort to discover comets is collaborative and worldwide. If the “Big One” were headed our way, even the likes of Morgan Freeman couldn’t keep it secret.

Trouble is, many unfounded claims are already making their way around the internet about this years’ much anticipated “Comet of the Century,” C/2012 S1 ISON.

Many of these conspiracy theories seem to be a recycling of last years’ Nibiru nonsense. The train of thought runs something like this: Does NASA know something that they’re not telling us? Why are they so interested in this comet? We’ve even had folks ask us why certain patches of Google Earth are “blacked out!”

What ARE they hiding, man?

It’s funny how pseudoscience seems to bubble to the top on YouTube, but I won’t give these conspiracy videos the exposure of the Universe Today platform. With hundreds of thousands of hits, they certainly don’t seem to need it. A simple YouTube search of “ISON” will scare up many wacky ideas about the comet.

In any event, we’ve already fielded several questions from friends and the public on the “dangers” posed by this comet, so we can only imagine that these will grow in intensity as the comet approaches the inner solar system, especially if it performs up to expectations.

What are some of the conspiracy theories out there about Comet ISON?

One currently circulating claim states that Comet ISON has “companions” that have been imaged trailing it. While comets do indeed fragment on occasion, the culprits that can be seen in the .gif animation circulating the internet are easily identified by photography experts as hot pixels in the camera.

Another even more extravagant claim is that Comet ISON will somehow appear “as bright as the Sun.” Even if Comet ISON reaches an expected magnitude equal to that of the full Moon at -13, it will do so when it is less than a degree  from the Sun. Our Sun shines at magnitude -26.74, or over 158,000 times brighter, so it would be very difficult for this comet to compete with the Sun’s brightness in the daytime!

Others seem to worry that this comet — or particles from ISON — could impact Earth. Comet ISON will be making its inner solar system passage safely 0.426 A.U., or a little over 63 million kilometers from Earth even on its closest approach on December 26th. Scientists have defined this comet’s orbit very precisely, and it won’t hit Earth. So, no Comet ISON is not Nibiru — that ‘tenth planet’ destined to destroy Earth that conspiracy lovers can’t seem to let go of.

The debris — which might create a very nice meteor shower — is made up of extremely tiny grains of dust, no more than a few microns wide. Since they will be hitting Earth’s atmosphere at speeds up to 200,000 km/hr (125,000 miles per hour), the particles will burn up.

Here’s a video NASA released about the potential meteor shower from ISON:

Other claims focus on how this comet may cause earthquakes or wreak other untold havoc on Earth. This type of comet hysteria is nothing new. Name a bright comet in history, and you can find a historical event for a convenient tie-in. When haven’t there been earthquakes, pandemics, and wars in history? Plus, according to the US Geological Survey, on any given day there will be an average of 2,750 earthquakes around the world of which 275 are large enough to be felt by humans. But only about 100 earthquakes a year are large enough to cause any damage.

And so, its too easy to tie the “causes” of earthquakes and other events to comets in the sky. Comets have been seen before and during the Norman invasion of England in 1066, an outbreak of the Black Plague in London in 1665, and much more. Gary Kronk maintains a wacky and wonderful list of historical (and sometimes comical) comet “signs and omens” on his Cometography site.

Comet Lovejoy as seen from the International Space Station.
Another brilliant sungrazer, Comet Lovejoy as seen from the International Space Station on December, 2011. (Credit: NASA).

Halley’s Comet produced one of the first great comet hypes of the 20th century with its 1910 passage. Ironically, another comet made a brilliant passage just a few months prior, which became known as the Great Comet of 1910. In fact, many viewers in the general public actually saw this comet and confused it with Halley’s! The recent discovery of cyanogen in the comet’s spectra sparked a panic in the public as hucksters made a small fortune hawking “comet pills” and gas masks to panicked buyers. Never mind that folks ingest more toxic carcinogens from their daily environment than are ever seeded by the tenuous tails of comets.

Another curious bit of hype sprung up in 2011 around Comet Elenin, which promptly broke up and dissipated without even putting on a show. And the supposed earthquakes that conspiracy theorists predicted? Well, the evidence speaks loudly: nothing happened. And the same will be true of Comet ISON. It won’t cause any earthquakes or other disasters. As Don Yeomans from NASA said about Comet Elenin, “It will have an immeasurably miniscule influence on our planet. By comparison, my subcompact automobile exerts a greater influence on the ocean’s tides than comet Elenin ever will.”

So, what’s the harm in all the comet hysteria? Well, one only has to look at the mass suicide of the Heaven’s Gate cult in 1997 to realize that it can be no laughing matter. The suicide was sparked by the idea popularized on the late night Coast to Coast with Art Bell radio show that a spacecraft had been spotted following Comet Hale-Bopp.

Dozens of comets are discovered every year. A great majority are tiny iceballs in unfavorable orbits that never rise above magnitude +10 and are thus of little interest to backyard observers. A couple of times a year, a comet might reach magnitude +6 to +10 and become a fine binocular object.

When a discovery is made — be it by amateur or professional — the first task is to gain enough observations of the object to ascertain its orbit. Once again, we see the international collaborative methods employed by modern science. Already, the cosmic cat’s out of the bag as observatories worldwide make follow up measurements. There are no secrets about Comet ISON that hundreds of astronomers could keep quiet.

You get the idea... a 1687 leaflet depicting the havoc that a comet is sure to bring. (Wikimedia Commons image in the Public Domain).
You get the idea… a 1687 leaflet depicting the havoc that a comet is sure to bring. (Wikimedia Commons image in the Public Domain).

But here are some facts about Comet C/2012 S1 ISON. It was discovered last September by Russian amateurs Vitali Nevski and Artyom Novichonok while making observations for the International Scientific Optical Network (ISON), hence the comet’s name. At the time, it was farther than Jupiter and impossibly faint, but once ISON’s orbit was determined, astronomers realized the comet would pass only 1.1 million miles from center of the Sun (680,000 miles above its surface) on November 28, 2013.

Comet ISON belongs to a special category of comets called sungrazers. As the comet performs a hairpin turn around the Sun on that date, its ices will vaporize furiously in the intense solar heat. Assuming it defies death by evaporation, ISON is expected to become a brilliant object perhaps 10 times brighter than Venus, or maybe even brighter. But that would only occur for a brief time around at perihelion (closest approach to the Sun).

In the end, Comet ISON may put on a good show, but don’t believe the hype.

Comets are notoriously unpredictable when it comes to brightness estimations. To quote comet-hunter David Levy, “Comets are like cats… they have tails, and they do exactly what they want.” But they cannot, however, violate the laws of orbital mechanics!

The orbit and orientation of Comet ISON the day after Christmas 2013 on closest approach to the Earth. (Credit: NASA/JPL's Small-Body Database Browser).
The orbit and orientation of Comet ISON the day after Christmas 2013 on it closest approach to the Earth. (Credit: NASA/JPL’s Small-Body Database Browser).

Comet Lemmon, Now in STEREO

An icy interloper was in the sights of a NASA spacecraft this past weekend.

Comet 2012 F6 Lemmon passed through the field of view of NASA’s HI2A camera as seen from its solar observing STEREO Ahead spacecraft. As seen in the animation above put together by Robert Kaufman, Comet Lemmon is now displaying a fine ion and dust tail as it sweeps back out of the inner solar system on its 10,750 year plus orbit.

Comet Lemmon has been a dependable performer for southern hemisphere observers early in 2013. As we reported earlier this month for Universe Today, this comet is now becoming a binocular object low in the dawn sky for northern hemisphere astronomers.

Comet Lemmon passed perihelion at 0.73 astronomical units from the Sun on March 24th. It’s currently in the +4th to +5 magnitude range as it heads northward through the constellation Pisces.

NASA’s twin Solar TErrestrial RElations Observatory (STEREO) spacecraft often catch sungrazing comets as they observe the Sun. Known as STEREO A (Ahead) & STEREO B (Behind), these observatories are positioned in Earth leading and trailing orbits. This provides researchers with full 360 degree coverage of the Sun. Launched in 2006, STEREO also gives us a unique perspective to spy incoming sungrazing comets. Recently, STEREO also caught Comet 2011 L4 PanSTARRS and the Earth as the pair slid into view.

Another solar observing spacecraft, the European Space Agencies’ SOlar Heliospheric Observatory (SOHO) has been a prolific comet discoverer. Amateur comet sleuths often catch new Kreutz group sungrazers in the act. Thus far, SOHO has discovered over 2400 comets since its launch in 1995. SOHO won’t see PanSTARRS or Lemmon in its LASCO C3 camera but will catch a glimpse of Comet 2012 S1 ISON as it nears the Sun late this coming November.

Like SOHO and NASA’s Solar Dynamics Observatory, data from the twin STEREO spacecraft is available for daily perusal on their website. We first saw this past weekend’s animation of Comet Lemmon passing through STEREO’s field of view on the Yahoo STEREOHunters message board.

Here’s a cool but largely unrecognized fact about comets. As they move back out of the solar system, their dust tail streams out ahead of them, driven by the solar wind. I’ve even seen a few science fiction flicks get this wrong. We simply expect comets to always stream their tails out behind them!

Another observatory in our solar observing arsenal has also moved a little closer to operability recently. The Interface Region Imaging Spectrograph (IRIS) arrived at Vandenberg recently in preparation for launch this summer on June 26th. IRIS will be deployed from a Pegasus XL rocket carried aloft by an L-1011. NuSTAR was launched in a similar fashion in 2012. A Pegasus XL rocket will also launch the TESS exoplanet hunting satellite in 2017.

Keep an eye out for Comet Lemmon as it emerges from the dawn twilight in the days ahead. Also, be sure to post those pics to Universe Today’s Flickr community, and keep tabs on the sungrazing action provided to us by SOHO and STEREO!


A ‘Shallow’ Lunar Eclipse Coming on April 25

Eclipse season is upon us this week with the first eclipse of 2013, a brief partial lunar eclipse.

The lunar eclipse on April 25, 2013 is a shallow one, meaning only a paltry 1.47% of the lunar limb will be immersed in the dark umbra or inner shadow of the Earth. Observers can expect to see only a dark diffuse edge of the inner shadow nick the the Moon as is grazes the umbra.

A partial lunar eclipse this shallow hasn’t occurred since May 3rd, 1958 (0.9%) and won’t be topped until September 28th, 2034 (1.4%). This is the second slightest partial lunar eclipse for this century.

Another term for this sort of alignment is known as a syzygy, a great triple-letter word score in Scrabble!

A video simulation of the eclipse:

The eclipse will be visible in its entirety from eastern Europe & Africa across the Middle East eastward to southeast Asia and western Australia. The eclipse will be visible at moonrise from South America to Western Europe and occurring at moonset for eastern Australia and the Far East. The partially eclipsed Moon will be directly overhead just off the northeastern coast of Madagascar. The eclipse will not be visible from North America.

Two eclipse seasons occur each year when the nodal points of the Moon’s orbit intersect the ecliptic while aligned with the position of the Sun and the Earth’s shadow. The Moon’s orbit is inclined 5.15° degrees with respect to the ecliptic, which traces out our own planet’s path around the Sun. If this intersection occurs near New or Full Moon, a solar or lunar eclipse occurs.

The visibility region of Thursday's partial lunar eclipse.
The visibility region of Thursday’s partial lunar eclipse (Credit: NASA/GSFC/F. Espenak).

If the Moon’s orbit was not inclined to our own, we’d get two eclipses per lunation, one solar and one lunar.

2013 has 5 eclipses, 3 lunar and 2 annular. The minimum number of eclipses that can occur in a calendar year is 4, and the maximum is 7, as will next occur in 2038.

The 3 lunar eclipses in 2013 are this week’s partial eclipse on April 25th and two faint penumbral eclipses, one on May 25th and another on October 18th. There is no total lunar eclipse in 2013. The last one occurred on December 10th 2011, and the next one won’t occur until April 15th 2014, favoring the Pacific Rim region.

This eclipse will also set us up for the first solar eclipse of 2013, an annular eclipse crossing NE Australia (in fact crossing the path of last year’s total eclipse near Cairns) and the south Pacific on May 10th. The only solar totality that will touch the surface of the Earth in 2013 is  the hybrid eclipse on November 3rd spanning Africa and the South Atlantic with a maximum totality of 1 minute & 40 seconds.

Contact times for the April 25 shallow eclipse:

P1-The Moon touches the penumbra-18:03:41 UT

U1-The Moon touches the umbra-19:54:04 UT

Mid-Eclipse-20:08:37.5 UT

U4 -The Moon quits the umbra-20:21:04 UT

P4-The Moon quits the penumbra- 22:11:23 UT

The length of the partial phase of the eclipse is exactly 27 minutes, and the length of the entire eclipse is 4 hours, 7 minutes and 42 seconds.

This particular eclipse is part of saros series 112 and is member 65 of 72.

This saros cycle began in 859 C.E. on May 20th and will end in 2139 on July 12th with a penumbral lunar eclipse. One famous member of this series was 52.  This eclipse was one of many used by Captain James Cook to fix his longitude at sea on December 4th 1778. Christopher Columbus also attempted this feat while voyaging to the New World. It’s a fun project that anyone can try!

I also remember watching the last eclipse in this series from South Korea on April 15th 1995, a slightly better partial of 11.14%.

An occultation of the bright star Spica occurs just 20 hours prior as seen from South Africa across the southern Atlantic. This the 5th in a series of 13 occultations of the star by the Moon in 2013.

Occultation of Spica
The visibility region for the April 25th occultation of Spica. (Created by the Author using Occult

The +2.8th magnitude star Zubenelgenubi (Alpha Librae) is occulted by the waning gibbous Moon just 15 hours after the eclipse for Australia and the South Pacific.

Another occultation of a bright star with potential this week is +4.7th magnitude Chi Virginis across North America on the morning of Wednesday, April 24th  centered on 4:24 UT.

Chi Virginis occultation
Visibility region for the occultation of Chi Virginis on April 24th. (Created by the author using Occult software).

Also keep an eye out for +0.1 magnitude Saturn near the Full Moon. Saturn reaches opposition this weekend for 2013 on April 28th

Full Moon occurs near mid-eclipse at 20:00 UT/16:00 EDT on April 25th. Colloquial names for the April Full Moon are the Pink, Fish, Sprouting Grass, Egg, Seed, & Waking Moon.

Sure, the penumbral phases of an eclipse are subtle and may not be noticeable to the naked eye… but it is possible to see the difference photographically.  Simply take a photo of the Moon before it enters the Earth’s penumbra, then take one during the penumbral phase and then another one after.  Be sure to keep the ISO/f-stop and shutter speed exactly the same throughout. Also, this project only works if the eclipsed Moon is high in the sky throughout the exposures, as the thick air low to the horizon will discolor the Moon as well. Compare the shots; do you see a difference?

A penumbral eclipse would offer a good proof of concept test for hunting for transiting exoplanets as well, although to our knowledge, no one has ever attempted this.

Finally, calling out to all Universe Today readers in Madagascar. YOU may just be able to catch a transit  of the International Space Station in front of the Moon just as the ragged edge of the umbra becomes apparent on the limb of the Moon. Check CALSky a day or so prior to the eclipse for a refined path… it would be an unforgettable pic!

The position of the ISS on April 25th at 19:48UT, just minutes before the partial pahse of the eclipse begins. (Credit: Orbitron).
The position of the ISS on April 25th at 19:48UT, just minutes before the partial phase of the eclipse begins. (Credit: Orbitron).

And if any ambitious observer is planning to live stream the eclipse, let us know and we’ll add your embed to this post. We do not expect an avalanche of web broadcasts, but hey, we’d definitely honor the effort!  Slooh is usually a pretty dependable site for live eclipse broadcasts, and as of this writing seems to have broadcast scheduled in the cue.

Happy eclipse-spotting!

The Curious History of the Lyrid Meteor Shower

Today we residents of planet Earth meet up with a meteor stream with a strange and bizarre past.

The Lyrid meteors occur annually right around April 21st to the 23rd. A moderate meteor shower, observers in the northern hemisphere can expect to see about 20 meteors in the early morning hours under optimal conditions. Such has been the case for recent years past, and this year’s presence of a waxing gibbous Moon has lowered prospects for this April shower considerably in 2013.

But this has not always been the case with this meteor stream. In fact, we have records of the Lyrids stretching back over the past 2,600 years, farther back than any other meteor shower documented.

The earliest account of this shower comes from a record made by Chinese astronomers in 687 BC, stating that “at midnight, stars dropped down like rain.” Keep in mind that this now famous assertion that is generally attributed to the Lyrids was made by mathematician Johann Gottfried Galle in 1867. It was Galle along with Edmond Weiss who noticed the link between the Lyrids and Comet C/1861 G1 Thatcher discovered six years earlier.

Comet Thatcher was discovered on April 5th, 15 days before it reached perihelion about a third of an astronomical unit (A.U.) from the Earth. Comet Thatcher a periodic comet on a 415 year long orbital period.

But in the early to mid-19th century, the very idea that meteor showers were linked to comets or even non-atmospheric phenomena was still hotly contested.

One singular event more than any other triggered this realization. The Leonid meteor storm of 1833 in the early morning hours of November 13th was a stunning and terrifying spectacle for residents of the U.S eastern seaboard. This shower produces mighty outbursts, often topping a Zenithal Hourly Rate (ZHR) of over a 1,000 once every 33 to 34 years. I witnessed a fine outburst of the Leonids from Kuwait in 1998, and we may be in for a repeat performance from this shower around 2032 or 2033.

There is substantial evidence that the Lyrids may also do the same at an undetermined interval. On April 20th 1803, one of the most famous accounts of a “Lyrid meteor storm” was observed up and down the United States east coast. For example, one letter to the Virginia Gazette states;

“From one until three, those starry meteors seemed to fall from every point in the sky heavens, in such numbers as to resemble a shower of sky rockets.”

Another account published in the Raleigh, North Carolina Register states that:

“The whole hemisphere as far as the extension of the horizon seemed illuminated; the meteors kept no particular direction but appeared to move in every way.”

study of the 1803 Lyrid outburst by W.J. Fisher cites over a dozen accounts of the event and is a fascinating read. Viewers were also primed for the event by the dramatic Leonid storm of 1799 four years earlier.

Interestingly, the Moon was only one day from New phase on the night of the 1803 Lyrids. Prime meteor watching conditions.

An unrelated meteorite fall would also occur four years later over Weston, Connecticut on December 14th, 1807 as recounted by Kathryn Prince in A Professor, A President, and a Meteor. These events would place Yankee politics at odds with the origin of meteors and rocks from the sky.

An apocryphal quote is often attributed to President Thomas Jefferson that highlights the controversy of the day, saying that “I would more easily believe that two Yankee professors would lie than that stones would fall from heaven.”

While both are of cosmogenous origin, no meteorite fall has ever been linked to a meteor shower, which is spawned by dust debris from comets. For example, many in the media erroneously speculated that the Sutter’s Mill meteorite that fell to Earth on the morning of April 22nd, 2012 was in fact a Lyrid meteor.

But a Lyrid may be implicated in another unusual 19th century observation. On April 24th 1874, a professor Scharfarik of Prague, Czechoslovakia was observing the daytime First Quarter Moon with his 4” refractor. The good professor was surprised by an “Apparition on the disc of the Moon of a dazzling white star,” which was “quite sharp and without a perceptible diameter.” Possible suspects are a telescopic meteor moving towards or along the observers’ line of sight or perhaps a Lyrid impacting the dark limb of the Moon.

Moving into the 20th century, rates for the Lyrids have stayed in the ZHR=20 range, with notable peaks of 100+ per hour noted by Japanese observers in 1922 and 100 per hour noted by U.S. observers in 1982.

It should also be noted that another less understood shower radiates from the constellation Lyra in mid-June. First noted Stan Dvorak while hiking in the San Bernardino Mountains in 1966, the June Lyrids produce about 8-10 meteors per hour from June 10 to the 21st. The source of this newly discovered shower is thought to be Comet C/1915 C1 Mellish.

A June Lyrid may have even made its way into modern fiction. As recounted in a July 2004 issue of Sky & Telescope, researchers Marilynn & Donald Olson note the following line from James Joyce’s Ulysses:

“A star, precipitated with great apparent velocity across the firmament from Vega in the Lyre above the zenith.”

Joyce seems to be describing a June Lyrid decades before the shower was officially recognized. The constellation Lyra rides high in the early morning sky for mid-northern latitudes in the early summer months.

All interesting concepts to ponder as we keep an early morning vigil for the Lyrids this week. Could there be more Lyrid storms in the far off future, as Comet Thatcher reaches perihelion once again in the late 23rd century? Could more historical clues of the untold history of this and other showers be awaiting discovery?

Somewhat closer to us in time and space, Paul Wiegert of the University of Ontario has also recently speculated that Comet 2012 S1 ISON may provoke a meteor shower on January 12th, 2014. Regardless of whether ISON turns out to be the “Comet of the Century,” this could be one to watch out for!


How Micrometeoroid Impacts Pose a Danger for Today’s Spacewalk

Video streaming by Ustream

Our very own International Space Station is in the cosmic crosshairs.

As cosmonauts are to begin Extra Vehicular Activity (EVA) this morning to perform routine maintenance, an article reminding us of the hazards of such activity came to us via NASA’s Orbital Debris Quarterly Newsletter.

The problem is Micrometeoroid and Orbital Debris (MMOD) impacts. These are nothing new. Pits and tiny cratering has been observed during post-flight inspections of space shuttle orbiters. But this is the first time we’d seen talk of damage caused by tiny impacts on the exterior of the International Space Station.

The handrails are a particularly sensitive area of concern.

The study examined damage incurred on handrails exposed to the environment of space for years on end. These present a hazard to spacewalking astronauts who rely on the handles to move about. These craters often become spalled, presenting a sharp metal rim raised from the surface of the handle.

Close-up of a micro-meteoroid impact on a handrail. (Credit: NASA/JSC Image & Science Analysis Group).
Close-up of a micro-meteoroid impact on a handrail. (Credit: NASA/JSC Image & Science Analysis Group).

Of course, these razor sharp rims present a problem, especially to space suit gloves. One 34.8 centimeter long handrail returned on the final Space Shuttle mission STS-135 had six impact craters along its length. The handrail had been in service and exposed to the vacuum of space for 8.7 years.

Craters as large as 1.85 millimetres (mm) in diameter with raised lips of 0.33mm have been observed on post-inspection. In studies conducted by NASA engineers, craters with lip heights as little as 0.25mm have been sufficient to snag and tear spacesuit gloves.

There have also been reported incidents of glove tears during EVAs conducted from the ISS over the years. For example, the report cites a tear noticed by astronaut Rick Mastracchio during STS-118 that cut the EVA short.

Analysis of an impact seen on STS-122. (Credit: NASA
Analysis of an impact seen on STS-122. (Credit: NASA/JSC Image & Science Analysis Group).

To protect astronauts and cosmonauts during EVAs, the following measures have been instituted:

–          Toughening space suit gloves by adding reinforcement to areas exposed to potential MMOD damage.

–          Monitoring and analyzing MMOD impacts along handrails and maintaining a database of problem areas.

–          Equipping spacewalkers with the ability to cover and/or repair hazardous MMOD areas during spacewalks.

The studies were carried out by the Johnson Space Center Hypervelocity Impact Technology Group in conjunction with a test facility at White Sands, New Mexico. Astronaut Rick Mastracchio can also be seen talking about the hazards of spacewalking on this video.

Today’s 6 hour EVA by cosmonauts Vinogradov & Romanenko begins at 14:06 UT 10:06AM EDT.

This will be the 32nd Russian EVA from the International Space Station and will use the Pirs hatch on Zvezda.

Tasks include retrieving and installing experiment packages and replacing a defective retro-reflector device on the station’s exterior.  The device is a navigational aid necessary for the Albert Einstein ATV-4 mission headed to the ISS on June 5th.

Progress 51P is also scheduled to launch towards the ISS next week on April 24 for docking on April 26th.

Debris in Low Earth Orbit is becoming an increasing concern. The Chinese anti-satellite test in 2007 and the collision of Kosmos 2251 and Iridium 33 in 2009 have increased hazards to the ISS. Many fear that a tipping point, known as an ablation cascade, could eventually occur with one collision showering LEO with debris that in turn trigger many more. The ISS was only finished in 2011, and it would be a tragic loss to see it abandoned due to a catastrophic collision only years after completion.

More than once, ISS crew members have sat out a debris conjunction that was too close to call in their Soyuz life boats, ready to evacuate the station if necessary. DAMs (Debris Avoidance Maneuvers) are now common for the ISS throughout the year.

Several ideas have been proposed to deal with space debris. In the past year, NanoSail-2D demonstrated the ability to deploy a solar sail from a satellite for reentry at the end of a spacecraft’s life span. Such technology may be standard equipment on future satellites.

Expect reentries to increase as we near the solar maximum for cycle #24 in late 2013 & early 2014. This occurs because the exosphere of Earth “puffs out” due to increased solar activity and increases drag on satellites in low Earth orbit.

All food for thought as we watch today’s EVA… space travel is never routine!

The April 2013 edition of the Orbital Debris Quarterly News is available for free online.