Colliding Black Holes Provide Another way to Measure Distance in the Universe

This image is from a simulation of two merging black holes. The upcoming Vera Rubin Observatory should be able to detect binary black holes before they merge. But the vexing problem of false positives needs a solution. Image Credit: Simulating eXtreme Spacetimes (SXS) Project

We know the universe is expanding, and we have a pretty good idea of how fast it’s expanding, but we don’t know the rate exactly. That’s because of the different methods we have to measure the rate of cosmic expansion keep giving us slightly different results. It’s a nagging problem that bugs astronomers, so while they have worked to ensure current methods are accurate, they have also looked to new ways to measure cosmic expansion. One of these new ways involves gravitational waves.

Continue reading “Colliding Black Holes Provide Another way to Measure Distance in the Universe”

The Latest Webb Observations Don’t Disprove The Big Bang, But They Are Interesting

Diagram showing the Lambda-CBR universe, from the Big Bang to the the current era. Credit: Alex Mittelmann/Coldcreation

Okay, so let’s start with the obvious. The big bang is not dead. Recent observations by the James Webb Space Telescope have not disproven the big bang, despite certain popular articles claiming otherwise. If that’s all you needed to hear, then have a great day. That said, the latest Webb observations do reveal some strange and unexpected things about the universe, and if you’d like to know more, keep reading.

Continue reading “The Latest Webb Observations Don’t Disprove The Big Bang, But They Are Interesting”

Gravitational Waves Will Give Astronomers a new way to Look Inside Neutron Stars

Illustration showing the merger of two neutron stars. Credit: NASA's Goddard Space Flight Center/CI Lab

It’s difficult to study neutron stars. They are light years away and only about 20 kilometers across. They are also made of the most dense material in the universe. So dense that atomic nuclei merge together to become a complex fluid. For years our understanding of the interiors was based on complex physical models and what little data we could gather from optical telescopes. But that’s starting to change.

Continue reading “Gravitational Waves Will Give Astronomers a new way to Look Inside Neutron Stars”

Astronomers Have Revealed a Black Hole's Photon Ring for the First Time

The calculated photon ring of M87*. Credit: Broderick, et al

In 2019 the Event Horizon Telescope gave us our first direct image of a black hole. It was a powerful image, but not one with much detail. It looks like a blurry orange donut. To be fair, the real meat of the discovery was in the data, not the image. And as a recent study shows, there’s a great deal more in the data than what we’ve seen.

Continue reading “Astronomers Have Revealed a Black Hole's Photon Ring for the First Time”

One Exciting way to Find Planets: Detect the Signals From Their Magnetospheres

Artistic rendering of the Tau Boötes b system, showing the planet and its magnetic field. Credit: Jack Madden/Cornell University

We have discovered thousands of exoplanets in recent years. Most have them have been discovered by the transit method, where an optical telescope measures the brightness of a star over time. If the star dips very slightly in brightness, it could indicate that a planet has passed in front of it, blocking some of the light. The transit method is a powerful tool, but it has limitations. Not the least of which is that the planet must pass between us and its star for us to detect it. The transit method also relies on optical telescopes. But a new method could allow astronomers to detect exoplanets using radio telescopes.

Continue reading “One Exciting way to Find Planets: Detect the Signals From Their Magnetospheres”

Hot Stars Blast Away at gas Giants Until Only Their Rocky Cores Remain

Artist view of a Neptune-sized planet orbiting a blue A-type star. Credit: Steven Giacalone, UC Berkeley

In our solar system, we have two types of planets. Small, warm, rocky worlds populate the inner region, while the outer region has cold gas giants. Intuitively this makes a lot of sense. When the solar system was forming, the Sun’s light and heat must have pushed much of the gas toward the outer system, leaving heavier dust and rock to form the inner worlds. Giants could only grow in the cold, dark outer solar system. But we now know our solar system is more the exception than the rule. Many star systems have large gas planets that orbit close to their stars. These hot Jupiters and hot Neptunes are unlike anything in our solar system, and astronomers are keen to understand what they may be like.

Continue reading “Hot Stars Blast Away at gas Giants Until Only Their Rocky Cores Remain”

Primordial Black Holes Could Have Triggered the Formation of Supermassive Black Holes

Artist view of merging black holes in the early universe. Credit: LIGO/Caltech/MIT/R. Hurt (IPAC)

The early moments of the universe were turbulent and filled with hot and dense matter. Fluctuations in the early universe could have been great enough that stellar-mass pockets of matter collapsed under their own weight to create primordial black holes. Although we’ve never detected these small black holes, they could have played a vital role in cosmic evolution, perhaps growing into the supermassive black holes we see today. A new study shows how this could work, but also finds the process is complicated.

Continue reading “Primordial Black Holes Could Have Triggered the Formation of Supermassive Black Holes”

Thanks to Gaia we Know Exactly how and When the Sun Will die

How different types of stars live and die. Credit: ESA

Our Sun is doomed. Billions of years from now, the Sun will deplete its hydrogen fuel and swell to a red giant before becoming a white dwarf. It’s a well-known story, and one astronomers have understood for decades. Now, thanks to the latest data from Gaia, we know the Sun’s future in much greater detail.

Continue reading “Thanks to Gaia we Know Exactly how and When the Sun Will die”

Even a Cyclical Universe Needed to Come From Somewhere

Could our Universe be part of a wider Multiverse? And could these other Universes support life? Credit: Jaime Salcido/EAGLE Collaboration

In the beginning…

The first words of the book of Genesis make a declarative statement. God created Heaven and Earth, and thus begins the cosmic story. While not all creation myths have an act of beginning, most do. Humans are storytellers, and we like stories with a beginning. This origin need is deep within us and is even part of our scientific worldview. As is so often said in science, effects have causes. This cause and effect process is a powerful tool for understanding the world around us, but it’s not without its problems, particularly with the origin of the universe.

Continue reading “Even a Cyclical Universe Needed to Come From Somewhere”

Astronomers Measure the Signal of Dark Matter From 12 Billion Years ago

Visualization of how dark matter lenses distant light. Credit: Reiko Matsushita (Nagoya University)

Although the particles of dark matter continue to allude us, astronomers continue to find evidence of it. In a recent study, they have seen its effect from the edge of visible space, when the universe was just 1.5 billion years old.

Continue reading “Astronomers Measure the Signal of Dark Matter From 12 Billion Years ago”