Curiosity Is Going To Spend Its Summer Driving Around a Dangerous Sandy Region on Mars

Do road trips actually require roads? Not if you’re NASA’s Curiosity rover, who is embarking on an extended 1 mile long road trip this summer up the side of Mount Sharp.

The rover will be moving between two “units” of Gale Crater, where it has been exploring since 2014.  It’s wrapping up experiments in the “clay-bearing unit”, which resulted in the highest concentrations of clay found during the mission.  It’s now moving to the “sulfate-bearing unit”, which is expected to contain an abundance of sulfates, such as gypsum and Epsom salts.

Continue reading “Curiosity Is Going To Spend Its Summer Driving Around a Dangerous Sandy Region on Mars”

More Details On NASA’s VERITAS Mission, Which Could Go to Venus

Venus has always been a bit of the odd stepchild in the solar system.  It’s similarities to Earth are uncanny: roughly the same size, mass, and distance from the sun.  But the development paths the two planets ended up taking were very different, with one being the birthplace of all life as we know it, and the other becoming a cloud-covered, highly pressurized version of hell.  That cloud cover, which is partially made up of sulfuric acid, has also given the planet an air of mystery. So much so that astronomers in the early 20th century speculated that there could be dinosaurs roaming about on the surface.

Some of that mystery will melt away if a team from NASA’s Jet Propulsion Laboratory gets a chance to launch their newest idea for a mission to the planet, the Venus Emissivity, Radio Science, InSAR, Topograph, and Spectroscopy (or VERITAS) mission.

Continue reading “More Details On NASA’s VERITAS Mission, Which Could Go to Venus”

Now You Can Build Your Own Curiosity Rover

The open source movement has been a fixture in the software and electronics worlds for over a decade now.  Open source components serve as the basis from everything from 3D printed Iron Man figures to the Linux computer operating system.  Now there’s a new open source project that ambitious creatives can undertake: building their very own Mars Curiosity Rover.

Continue reading “Now You Can Build Your Own Curiosity Rover”

A Tabletop-sized Experiment Could Help in the Search for Dark Matter

A computer simulation of the distribution of matter in the universe. Orange regions host galaxies; blue structures are gas and dark matter. Credit: TNG Collaboration

Dark matter is one of the least understood aspects in physics.  The evidence for dark matter is from its gravitational influence on galactic scales which cannot be explained by the presence of conventional matter.  Despite its large gravitational interactions, it is notoriously difficult to learn about dark matter as it does not interact with electromagnetic fields, hence the name of “dark” matter.

But just because it is difficult to get it to interact with anything on the electromagnetic spectrum does not mean it is impossible to detect other feeble interactions it may have.  A team of theoretical physicists from Caltech have recently proposed a novel type of experiment that may just hold the key to understanding dark matter with specific types of interactions.

Continue reading “A Tabletop-sized Experiment Could Help in the Search for Dark Matter”

Here’s How Perseverance’s Helicopter Sidekick Will Deploy on Mars

Flight model of the Mars Ingeuity Helicopter
Flight model of the Mars Ingenuity Helicopter. Credit: NASA/JPL-Caltech

When NASA’s new Perseverance Martian rover launches in a little over a month it will have a small robotic stow-away on board.  Ingenuity is a small helicopter, with a fuselage about the size of a softball and two extending rotors that measure about 4 feet across.  It was attached to the bottom of the rover’s chassis in April, and NASA recently released details about it’s technically challenging release process.

Before the team of NASA and Lockheed Martin engineers started designing the release mechanism though, they had to decide what Ingenuity’s mission would actually be.  Ultimately, the helicopter will serve as the first powered experimental test flight on any extraterrestrial body.  NASA is hoping it will be the first of many, leading to future helicopters on Mars that could allow mission scientists to peer into previously inaccessible places, such as craters and cliffs, from the air. If Ingenuity is successful, it could pave the way to many future air based scientific and scouting missions.

Continue reading “Here’s How Perseverance’s Helicopter Sidekick Will Deploy on Mars”

Curiosity Sees Earth and Venus in the Night Skies on Mars

Mars rover Curiosity covered in dust and a combined image it took of Earth and Venus both in the Martian night sky.
Curiosity, seen here covered in dust, took two separate images that have been combined into one showing Earth and Venus in the night sky of Mars.

Normally the images from NASA’s Curiosity rover, currently sitting near “Bloodstone Hill” on Mars, are of alien vistas and rock outcroppings that conspiracy theorists constantly try to anthropomorphize into UFOs.  However, the rover is also excellently positioned to capture a unique perspective of an alien sky.  And that is exactly what it did recently when it captured an image of both Venus and Earth in the same Martian night sky.  The images were actually taken in two separate frames, though the two planets were visible in the sky at the same time.

Continue reading “Curiosity Sees Earth and Venus in the Night Skies on Mars”

The Navy is Testing Beaming Solar Power in Space

Image if the PRAM satellite prototypes that was recently launched into space
PRAM Satellite Prototype - Credit: U.S. Naval Research Laboratory

Solar power has become a focal point of the battle to mitigate climate change.  The potential of solar power is massive – Earth receives as much solar energy in an hour as all of humanity uses in a year.  Even with that much energy hitting the Earth, it is only a tiny fraction of the sun’s overall output.  Some of that other solar energy hits other planets, but most is just lost to the void of deep space.

There are a number of groups that are leveraging various technologies to capture some of that lost energy.  One of the most common technologies being pursued is the idea of the power satellite.  Recently, one of those groups at America’s Naval Research Laboratory (NRL) hit a milestone in the development of power satellite technology by launching their Photovoltaic RF Antenna Module (PRAM) test satellite.

Continue reading “The Navy is Testing Beaming Solar Power in Space”

NASA Looks Towards Next Mission to the Moon

NASA’s Lunar Atmosphere and Dust Environment Explorer (LADEE) Observatory sits beside a radio frequency antenna inside an enclosure that blocks external static to detect electromagnetic emissions. Image credit: NASA Ames

With the GRAIL mission ending today, NASA is preparing for its next lunar orbiter mission, which could help pave the way for a potential future human mission to the Moon. While the Moon seems to be an ‘on-again-off-again’ potential human destination, as the GRAIL mission points out, studies of our closest neighbor in space continues to reveal surprises.

But if we are ever going to establish any sort of long-term presence on the Moon, scientists and engineers will have to understand more about the environmental conditions that they’re dealing with. Lunar dust is an environmental factor that requires much more exploration and study, as it may pose one of the biggest problems for humans on the Moon. Lunar dust is as fine as talcum powder and abrasive enough to cause long term problems to the lenses and seals central to the operation of mechanical equipment — not to mention hazards to human health — during any lengthy stay on the Moon.

Artist concept of the LADEE spacecraft in orbit at the Moon. Credit: NASA

To study this unique lunar environmental phenomenon, NASA is in the process of testing the Lunar Atmosphere and Dust Environment Explorer (LADEE) in preparations for its upcoming launch. Recently, LADEE integrated the last of its three main science instruments. The three instruments to be launched with the craft are the Ultraviolet and Visible Light Spectrometer, which will analyze the light signatures of the materials it detects on the Moon, the Neutral Mass Spectrometer, set to detect differences in what little atmosphere there is on the Moon over multiple orbits, and the Lunar Dust Experiment, which will collect and analyze any dust particles that are floating around the sparse atmosphere that LADEE will be flying in.

In addition to it’s science experiments, LADEE will be technically unique in a few ways. First, it is pioneering NASA’s Modular Common Bus architecture, which will hopefully increase the compatibility between future lunar spacecraft’s communications and power systems and thereby decrease their cost.

LADEE will also carry a “technology demonstration payload,” which will allow it to communicate with Earth using lasers rather than radio waves. This will dramatically increase the speed of information transfer between the spacecraft and its controllers, resulting in almost broadband-internet levels of data exchange. If this technology proves successful it is likely to be used on future lunar exploration missions as well.

LADEE is currently undergoing a battery of environmental tests. Acoustic, vibration, shock and thermal-vacuum test still await the spacecraft after it recently passed the electromagnetic interference test. Assuming it manages to keep its clean bill of health, the spacecraft could be launched on it’s 160 day mission as early as August 2013. With its help, humanity will have a better understanding of how to combat one of the most unfriendly aspects of the lunar environment.

More information on LADEE from NASA

Study Looks at Making Asteroid Mining Viable

Artist concept of the Robotic Asteroid Prospector. Credit: Marc Cohen et al.

There’s been a lot of buzz in the media lately about mining asteroids, largely brought on by the introduction of Planetary Resources, Peter Diamandis’ new venture into the industry. But is this business proposition actually viable? NASA’s Innovative Advanced Concepts is funding a study that hopes to answer that question.

Called the Robotic Asteroid Prospector proposal, the project is part of the NIAC’s Phase I program awardees. It is headed by Dr. Marc Cohen, an architect based in Palo Alto California, with help from Warren James, a trajectory expert, Kris Zacny, a roboticist at Honeybee Robotics and Brad Blair, a mineral economist. Their proposal studies the fundamentals of some major questions facing the asteroid mining industry. What kinds of mission and spacecraft design are necessary? Is the right kind of mining technology available? And most importantly, is there even a viable business model for doing it in the first place?

Dr. Cohen himself is skeptical that there is, but points out that’s part of the reason he’s so interested in performing the research. Contributing to his skepticism are the numerous assumptions the proposal is based on. These include a telescope in Venus orbit to help the search for near-Earth objects (one of NASA’s primary mission statements, and similar to the B612 Foundation’s space telescope that will hunt for Near Earth Asteroids) and regular commercial access to a service base located in a Lagrange point from which to launch the missions.

“We’re trying to make the assumptions really clear, specific and explicit, so we understand what the trade-offs are,” Dr. Cohen told Universe Today. “One thing we’re being very careful about is not going in with any preconceptions.”

The assumptions lead to a spacecraft design, possibly using a solar-thermal propulsion system, that launches to a NEO from the Lagrange point station, mines and processes the material at the asteroid and then returns it to the Lagrange point for shipment back to Earth.

Dr. Cohen explained that the team is trying to find the requirements that would make a robotic asteroid program commercially successful.

There are still plenty of challenges to solve, including developing trajectories that allow the spacecraft to make repeated, short trips to the asteroid it is mining and handling any sort of technical problems without a human presence nearby. If it manages to resolve some of those difficulties, the project could result in the outlines of one of the backbones of the future space economy. It might also attract funding for the Phase II round of funding from NIAC next year.

For more information about the RAP, see the NIAC website