Observing Alert: Bright Spot On Uranus Reported

[/caption]

There’s nothing like a dynamic solar system… and right now another planet is being heard from. According to various sources, a bright spot – possibly a developing storm – has been spotted on Uranus.

“Professional observers this morning (October 27) reported a very bright cloud on Uranus, using the Gemini telescope, and need amateur confirmation if possible, to obtain a rotation period.” says John H. Rogers, Jupiter Section Director, British Astronomical Association. “Near-infrared filters may have the best chance of detecting it. It was recorded in the 1.6 micron band, which is further into the IR than amateurs can reach, but your usual near-IR filters might be successful. I think that methane filters are not especially promising, as these clouds on Uranus are overlaid by a methane-rich layer of atmosphere, but would be worth trying anyway. Anyone who has a 1-micron filter should have a go too.”

At this point in time, information is limited, but professional images taken using the 8.1-metre Gemini Telescope North on Hawaii have recorded a region said to be ten times brighter than the planetary background. The bright spot is believed to be attributed to methane ice. ““This is an H-band image, centered at 1.6 microns, close to the wavelength of maximum contrast for such features. Its contrast will decrease with decreasing wavelength, and will likely not be detectable by amateur astronomers, except possibly at the longer CCD wavelengths where the Rayleigh scattering background can be suppressed.” says Larry Sromovsky, of the University of Wisconsin-Madison. “Looking with a methane band filters at 890 nm might be productive, especially if the feature continues to brighten.”

“The feature is not very large; instead its prominence is due to its high altitude, placing it above the intense absorption of methane in the deeper atmosphere. This is much higher than the 1.2-bar methane condensation level and thus it is expected to be predominantly composed of methane ice particles.”

Dr Sromovsky added: “The latitude of the feature is approximately 22.5° north planetocentric, which is a latitude nearly at rest with respect to the interior. So it should rotate around Uranus’ axis with nearly a 17.24-hour period. At the time of the image, the feature’s longitude was 351° West. That could change slowly in either direction.

“The low latitude is unusual. Previous exceptionally bright cloud features on Uranus were at close to 30° North, both in 1998 (Sromovsky et al. 2000, Icarus 146, 307-311) and in 2005 (Sromovsky et al. 2007, Icarus 192, 558-575). The 2005 feature oscillated ±1° about its mean latitude. The new feature might also oscillate in latitude, in which case its longitudinal drift rate might also vary with time.”

Hang in there, UT readers! Right now we have two of our best astrophotographers doing their best to give us an exclusive look! This page will be updated as more information becomes available.

Partial Quote Source: Skymania News Release.

Tammy Plotner

Tammy was a professional astronomy author, President Emeritus of Warren Rupp Observatory and retired Astronomical League Executive Secretary. She’s received a vast number of astronomy achievement and observing awards, including the Great Lakes Astronomy Achievement Award, RG Wright Service Award and the first woman astronomer to achieve Comet Hunter's Gold Status. (Tammy passed away in early 2015... she will be missed)

Recent Posts

The Dream of Faster-than-Light (FTL) Travel: Dr. Harold “Sonny” White and Limitless Space

Dr. Harold "Sonny" White and the Limited Space Institute continue to pursue the dream of…

16 hours ago

A new Quantum Technique Could Enable Telescopes the Size of Planet Earth

A new technique that incorporates quantum techniques to interferometry could trigger another revolution in astronomy!

17 hours ago

Voyager 1 Doesn’t Know Where it is, Generating Random-Looking Telemetry Data

Old computer systems have a lot of wacky ways to fail. Computers that are constantly…

1 day ago

The Building Blocks for Supermassive Black Holes are Found in Dwarf Galaxies

We all know that a humongous black hole exists at the center of our galaxy.…

2 days ago

“Wind-Ruffled Waves, Foam and Wave Shadows, Above Natural Blue Seawater.” This is how we’ll Spot Exoplanets With Oceans

Our planet's oceans generate tell-tale light signatures when sunlight reflects off them. Exoplanets with significant…

2 days ago

Solar Orbiter’s Pictures of the Sun are Every Bit as Dramatic as You Were Hoping

On March 26th, the ESA's Solar Orbiter made its closest approach to the Sun so…

3 days ago