Categories: Guide to Space

Diffraction of Light

[/caption]
For some time, the behavior of light has baffled scientists. Initially, and in accordance with classic physics, light was thought to be a wave, an indefinable form of energy that simply flowed from a heated source. However, with the advent of quantum physics, scientists came to realize that photons, a tiny elementary particle responsible for all forms of electromagnetic radiation, was in fact the source. So you can imagine how confounded they were when, in the course of performing experiments, they discovered that it exhibited the behavior of both a particle and a wave! This rather unique behavior, the ability of light to behave as a wave, even though it is made up of tiny particles, is known as the Diffraction of Light.

By definition, diffraction refers to the apparent bending of waves around small obstacles and the spreading out of waves past small openings. It had long been understood that this is what happens when a wave encounters an obstacle, and by the 17th and 18th centuries, this behavior was observed through experiments involving light. One such physicist who observed this at work was Thomas Young (1773 – 1829), an English polymath who is credited devised the double-slit experiment. In this experiment, Young shone a monochromatic light source (i.e. light of a single color) through an aperture (in this case, a wall with a horizontal slits cut in it) and measured the results on a screen located on the other side. The results were interesting, to say the least. Instead of appearing in the same relative shape as the aperture, the light appeared to be diffracting, implying that it was made up of waves. The experiment was even more interesting when a second slit was cut into the screen (hence the name double-slit). Young, and those who repeated the experiment, found that interference waves resulted, meaning that two propagation waves occurred which then began to interfere with one another.

A more common example comes to us in the form of shadows. Ever notice how the outer edges do not appear solid, but slightly fuzzy instead? This occurs as a result of light bending slightly as it passes around the edge of an object, again, consistent with the behavior of a wave. Similar effects occur when light waves travel through a medium with a varying refractive index, resulting in a spectrum of color or a distorted image. Since all physical objects have wave-like properties at the atomic level, diffraction can be studied in accordance with the principles of quantum mechanics.

We have written many articles about diffraction of light for Universe Today. Here’s an article about visible light, and here’s an article about telescope resolution.

If you’d like more info on diffraction of light, check out these articles:
The Physics of Light: Diffraction
Experiments on Diffraction of Light

We’ve also recorded an episode of Astronomy Cast all about the Hubble Space Telescope. Listen here, Episode 88: The Hubble Space Telescope.

Sources:
http://en.wikipedia.org/wiki/Photon
http://en.wikipedia.org/wiki/Diffraction
http://en.wikipedia.org/wiki/Double-slit_experiment
http://library.thinkquest.org/27356/p_diffraction.htm
http://en.wikipedia.org/wiki/Thomas_Young_%28scientist%29
http://ww2010.atmos.uiuc.edu/%28Gh%29/guides/mtr/opt/mch/diff.rxml

Matt Williams

Matt Williams is a space journalist and science communicator for Universe Today and Interesting Engineering. He's also a science fiction author, podcaster (Stories from Space), and Taekwon-Do instructor who lives on Vancouver Island with his wife and family.

Recent Posts

Lunar Night Permanently Ends the Odysseus Mission

On February 15th, Intuitive Machines (IM) launched its first Nova-C class spacecraft from Kennedy Space…

8 hours ago

Webb Joins the Hunt for Protoplanets

We can't understand what we can't clearly see. That fact plagues scientists who study how…

11 hours ago

This Supernova Lit Up the Sky in 1181. Here’s What it Looks Like Now

Historical astronomical records from China and Japan recorded a supernova explosion in the year 1181.…

13 hours ago

Hubble Sees a Star About to Ignite

This is an image of the FS Tau multi-star system taken by the Hubble Space…

14 hours ago

This Black Hole is a Total Underachiever

Anyone can be an underachiever, even if you're an astronomical singularity weighing over four billion…

15 hours ago

Someone Just Found SOHO's 5,000th Comet

The Solar and Heliospheric Observatory (SOHO) was designed to examine the Sun, but as a…

15 hours ago