Exoplanet Aurora… Light ‘Em Up!

[/caption]

One of the most beautiful and mysterious apparitions – be it north or south – here on Earth is an auroral display. We know it’s caused by the Sun-Earth connection, so could it happen around exoplanets as well? New research shows that aurorae on distant “hot Jupiters” could be 100-1000 times brighter than Earthly aurorae, creating a show that would be… otherworldly!

“I’d love to get a reservation on a tour to see these aurorae!” said lead author Ofer Cohen, a SHINE-NSF postdoctoral fellow at the Harvard-Smithsonian Center for Astrophysics (CfA).

As we are now aware, aurorae occur here on Earth when the Sun’s energetic particles encounter our magnetosphere and are shifted towards the poles. This in turn excites the atmosphere, ionizing the particles. Much like turning on your electric stove, this causes the “element” to glow in visible light. It happens here… and it happens on Jupiter and Saturn as well. If other suns behave like our own and other planets have similar properties to those in our solar system, then the answer is clear.

Exoplanets have aurorae, too.

Cohen and his colleagues used computer models to study what would happen if a gas giant in a close orbit, just a few million miles from its star, were hit by a stellar blast. He wanted to learn the effect on the exoplanet’s atmosphere and surrounding magnetosphere. In this scenario, the solar storm is much more focused and far more concentrated when it impacts a “hot Jupiter”. In our solar system, a coronal mass ejection spreads out before it reaches us, but what would happen if it collided with a nearer planet?

“The impact to the exoplanet would be completely different than what we see in our solar system, and much more violent,” said co-author Vinay Kashyap of CfA.

Using modeling, the team took a look at the scenario. The solar blast would slice into the exoplanet’s atmosphere and weaken its magnetic shield. The auroral activity would then form a ring around the equator, 100-1000 times more energetic than seen here on Earth. It would then travel up and down the planet’s surface from pole to pole for hours, gradually weakening – yet the planet’s magnetosphere would save it from erosion. This type of study is important for understating habitable properties of Earth-like worlds.

“Our calculations show how well the planet’s protective mechanism works,” explained Cohen. “Even a planet with a magnetic field much weaker than Jupiter’s would stay relatively safe.”

Original News Source: Harvard-Smithsonian Center for Astrophysics News.

Tammy Plotner

Tammy was a professional astronomy author, President Emeritus of Warren Rupp Observatory and retired Astronomical League Executive Secretary. She’s received a vast number of astronomy achievement and observing awards, including the Great Lakes Astronomy Achievement Award, RG Wright Service Award and the first woman astronomer to achieve Comet Hunter's Gold Status. (Tammy passed away in early 2015... she will be missed)

Recent Posts

TESS Finds its First Rogue Planet

Well over 5,000 planets have been found orbiting other star systems. One of the satellites…

10 hours ago

There are Four Ways to Build with Regolith on the Moon

Over the last few years I have been renovating my home. Building on Earth seems…

20 hours ago

Purple Bacteria — Not Green Plants — Might Be the Strongest Indication of Life

Astrobiologists continue to work towards determining which biosignatures might be best to look for when…

2 days ago

See the Southern Ring Nebula in 3D

Planetary nebula are some of nature's most stunning visual displays. The name is confusing since…

2 days ago

Hubble Has Accidentally Discovered Over a Thousand Asteroids

The venerable Hubble Space Telescope is like a gift that keeps on giving. Not only…

2 days ago

NASA Restores Communications with Voyager 1

The venerable Voyager 1 spacecraft is finally phoning home again. This is much to the…

2 days ago