SOFIA Opens New Window on Star Formation in Orion

SOFIA’s mid-infrared image of Messier 42 (right) with comparison images of the same region made at other wavelengths by the Hubble Space Telescope (left) and European Southern Observatory (middle). (Credits: Visible-light image: NASA/ESA/HST/AURA/STScI/O’Dell & Wong; Near-IR image: ESO/McCaughrean et al.; Mid-IR image: NASA/DLR/SOFIA/USRA/DSI/FORCAST Team)

From a NASA Press Release:

A mid-infrared mosaic image from the Stratospheric Observatory for Infrared Astronomy, or SOFIA, offers new information about processes of star formation in and around the nebula Messier 42 in the constellation Orion. The image data were acquired using the Faint Object Infrared Camera for the SOFIA Telescope, or FORCAST, by principal investigator Terry Herter, of Cornell University during SOFIA’s Short Science 1 observing program in December 2010.

SOFIA’s view combines images at mid-infrared wavelengths of 19.7 microns (green) and 37.1 microns (red). The latter wavelength cannot be accessed by any telescope on the ground or currently in space. Detailed structures in the clouds of star construction material can be seen, as well as warm clouds of dust and gas surrounding, and partly obscuring, a cluster of luminous newborn stars at upper right.

The left and center panels of the three-image comparison have the same scale and orientation as the SOFIA image.

The image in the left panel, made at wavelengths visible to the human eye, shows dense clouds of interstellar dust blocking our view into parts of the star forming region, plus the rosy glow of hydrogen gas excited by radiation from the young stars just above the center.

In the center panel, the near-infrared image penetrates some of the dust and reveals numerous stars at various stages of formation, embedded inside the clouds.

SOFIA’s observations reveal distinctly different aspects of the M42 star formation complex than the other images. For example, the dense dust cloud at upper left is completely opaque in the visible-light image, partly transparent in the near-infrared image, and is seen shining with its own heat radiation in the SOFIA mid-infrared image. The hot stars of the Trapezium cluster are seen just above the centers of the visible-light and near-infrared images, but they are almost undetectable in the SOFIA image. At upper right, the dust-embedded cluster of high-luminosity stars that is the most prominent feature in the SOFIA mid-infrared image is less apparent in the near-infrared image and is completely hidden in the visible-light image.

For more information about SOFIA, visit:
http://www.nasa.gov/sofia
http://www.dlr.de/en/sofia

For information about SOFIA’s science mission, visit:
http://www.sofia.usra.edu
http://www.dsi.uni-stuttgart.de/index.en.html

Nancy Atkinson

Nancy has been with Universe Today since 2004. She is the author of a new book on the Apollo program, "Eight Years to the Moon," which shares the stories of 60 engineers and scientists who worked behind the scenes to make landing on the Moon possible. Her first book, "Incredible Stories from Space: A Behind-the-Scenes Look at the Missions Changing Our View of the Cosmos" tells the stories of those who work on NASA's robotic missions to explore the Solar System and beyond.

View Comments

Recent Posts

We Could Detect Extraterrestrial Satellite Megaconstellations Within a few Hundred Light-Years

If an alien civilization has a Starlink-like constellation of satellites, we might be able to…

6 mins ago

What we’ve Learned About Venus From the Parker Solar Probe

The Parker Solar Probe has been getting in a lot of extracurricular activity lately.  Originally…

4 hours ago

One Full Year of Seismic Data Collected by Mars Insight Includes 500 Quakes

The English vocabulary has some words that only make sense from an Earth-bound perspective.  Earthquake…

5 hours ago

SpaceX’s SN15 Starship Prototype Nails It!

On the fifth attempt, SpaceX nailed the high-altitude flight test with a Starship prototype! Onward…

2 days ago

Dark Matter Could Change the Temperature of Exoplanets, Allowing us to Detect it

If dark matter exists, it could make Jupiter-like exoplanets warmer than we expect.

2 days ago