Categories: Astronomy

Interstellar Scintilation

[/caption]

Anyone who has looked at stars in the night sky (especially ones low on the horizon) has undoubtedly seen the common effect of twinkling. This effect is caused by turbulence in the atmosphere as small over densities cause the path of the light to bend ever so slightly. Often, vivid color shifts occur since the effects are wavelength dependent. All of this happens in the short distance between the edge of the atmosphere and our eyes. Yet often times, giant molecular clouds lie between our detectors and a star. Could these clouds of gas and dust cause a twinkling effect as well?


In theory, there’s no reason they shouldn’t. As the giant molecular clouds intercepting the incoming starlight move and distort, so too should the path of the light. The difference is that, due to the extremely low density and extremely large size, the timescales over which this distortion would take place would be far longer. Should it be discovered, it would provide astronomers another method by which to discover previously hidden gas.

Doing this is precisely the goals of a team of astronomers working from the Paris University and Sharif University in Iran. To get and understanding of what to expect, the team first simulated the effect, taking into account the properties of the cloud (distribution, velocity, etc…) as well as refraction and reflection. They estimated that, for a star in the Large Magellanic Cloud with light passing through typical galactic H2 gas, this would produce twinkles with changes taking around 24 minutes.

Yet there are many other effects which can produce modulations on the same timescale such as variable stars. Additional constraints would be necessary to claim that a change would be due to a twinkling effect and not a product of the star itself. As stated before, the effect is different for different wavelengths which would produce a “variation of the characteristic time scale … between the red side of the optical spectrum and the blue side.”

With expectations in hand, the team began searching for this effect in areas of the sky in which they knew especially high densities of gas to exist. Thus, they pointed their telescopes towards dense nebulae known as Bok globules like Barnard 68 (pictured above). Observations were taken using the 3.6 meter ESO NTT-SOFI telescope since it had the capabilities to also take infrared images and better explore the potential effects on the red side of the spectrum.

From their observations over two nights, the team discovered one instance in which the modulation of brightness in the different wavelengths followed the predicted effects. However, they note that from a single observation of their effects, it does not conclusively demonstrate the principle. The team also observed stars in the direction of the Small Magellanic Cloud to attempt to observe this twinkling effect in that direction due to previously undetected clouds along the line of sight. In this attempt, they were unsuccessful. Further similar observations along these lines in the future could help to constrain the amount of cold gas within the galaxy.

Jon Voisey

Jon is a science educator currently living in Missouri. He is a high school teacher and does outreach with the St. Louis Astronomical society as well as presenting talks on science and related topics at regional conventions. He graduated from the University of Kansas with his BS in Astronomy in 2008 and has maintained the Angry Astronomer blog since 2006. For more of his work, you can find his website here.

Recent Posts

A Black Hole Consumed a Star and Released the Light of a Trillion Suns

When a flash of light appears somewhere in the sky, astronomers notice. When it appears…

16 hours ago

Sometimes Astronomy isn’t About What you see, but What you don’t see

Constraints are critical in any scientific enterprise. If a hypothesis predicts that there should be…

19 hours ago

SpaceX’s Super Heavy Fires 11 of its Engines in a Long-Duration Test

SpaceX conducted another static fire test with its BN7 prototype, this time firing up eleven…

19 hours ago

“Good Night Oppy” Beautifully Illustrates the Unbreakable Bond Between Humans and our Robotic Explorers

In January 2004, NASA rovers Spirit and Opportunity (aka “Oppy”) landed in two completely different…

1 day ago

Do Exoplanet Scientists Have Favorite Exoplanets?

Exoplanets have become quite the sensation over the last decade-plus, with scientists confirming new exoplanets…

1 day ago

With a Small Network of Satellites Around Mars, Rovers Could Navigate Autonomously

When it comes to "on the ground" exploration of Mars, rovers make pretty good advance…

2 days ago