Categories: Meteorites

Antarctic Micrometeorites Provide Clues to Solar System Formation

[/caption]

Researchers sifting through the pristine, cold snow in Antarctica have found micrometeorites that contain a bit of a surprise. The two micrometeorites, known as particles 19 and 119, contain extremely large amounts of carbon as well as excesses of deuterium. While this high organic content usually comes from distant interstellar space where molecular clouds gather to form new stars, other clues say these space rocks likely formed in our own solar system. This contradicts long-held notions that that all organic matter with extreme deuterium excesses have interstellar origins. Additionally, the meteorites could provide information about the protplanetary disk that formed our solar system.

(A) Backscattered scanning electron micrograph of particle 119. The carbon-rich areas appear dark (arrows); the bright inclusions are dominated by Fe-Ni sulfides and silicates. (B) High-resolution TEM image of particle 19. (C) Bright-field TEM image of particle 19. The lacey carbon film (13) is indicated as black arrows; the crystalline phases are Mgrich olivines (ol), Mg-rich pyroxenes (px), and Fe-Ni sulfides (S); OM, organic matter. Glassy aggregates (GEMS candidates) are highlighted in black squares (13). Image courtesy of Science/AAAS

Jean Duprat and colleagues working at the CONCORDIA polar station located in central Antarctica recovered the two micrometeorites from 40 to 55 year-old snow. In investigating their make-up to determine where they came from, the researchers identified crystalline materials embedded in particles 19 and 119 that indicate that they formed close to our sun, and much more recently than predicted.

Their findings imply that these well-preserved micrometeorites contain a record of the cold regions of our sun’s ancient proto-planetary disk, which eventually led to the formation of our solar system.

More studies of these and other meteorites could possibly reveal details of the first deliveries of organic materials to the primitive Earth.

The findings have been published in this week’s edition of Science.

Nancy Atkinson

Nancy has been with Universe Today since 2004, and has published over 6,000 articles on space exploration, astronomy, science and technology. She is the author of two books: "Eight Years to the Moon: the History of the Apollo Missions," (2019) which shares the stories of 60 engineers and scientists who worked behind the scenes to make landing on the Moon possible; and "Incredible Stories from Space: A Behind-the-Scenes Look at the Missions Changing Our View of the Cosmos" (2016) tells the stories of those who work on NASA's robotic missions to explore the Solar System and beyond. Follow Nancy on Twitter at https://twitter.com/Nancy_A and and Instagram at and https://www.instagram.com/nancyatkinson_ut/

Recent Posts

Artemis Astronauts Will Deploy New Seismometers on the Moon

Back in the 1960s and 1970s, Apollo astronauts set up a collection of lunar seismometers…

14 hours ago

Ice Deposits on Ceres Might Only Be a Few Thousand Years Old

The dwarf planet Ceres has some permanently dark craters that hold ice. Astronomers thought the…

15 hours ago

The Mystery of Cosmic Rays Deepens

Cosmic rays are high-energy particles accelerated to extreme velocities approaching the speed of light. It…

17 hours ago

NASA Confirms that a Piece of its Battery Pack Smashed into a Florida Home

NASA is in the business of launching things into orbit. But what goes up must…

17 hours ago

Are Titan's Dunes Made of Comet Dust?

A new theory suggests that Titan's majestic dune fields may have come from outer space.…

1 day ago

The Solar Wind is Stripping Oxygen and Carbon Away From Venus

The BepiColombo mission, a joint effort between JAXA and the ESA, was only the second…

1 day ago