Categories: ScienceSpace Flight

Astronomy Without A Telescope – The Hitchhikers Guide To The Solar System

Short on fuel, but good at astrophysics? It is possible to tour the solar system on less than 30 Altairian dollars a day by using the Interplanetary Transport Network (ITN).  

The ITN is based on gravity assist manoeuvres and low energy transfer orbits around and between Lagrange points. Using the ITN, it is theoretically possible to tour the solar system with an exceedingly economic use of fuel as long as you have an abundance of patience and don’t mind taking an often circuitous route to your destination.  

If you imagine the whole solar system as a rubber sheet which is warped by gravity wells, then the planets are really just small depressions of different depths pressed into the sides the Sun’s overarching gravity well.  

What’s important to this story is that the edges of those small depressions are nearly flat with respect to the otherwise steep slopes created by the Sun and the planets. It takes a lot less energy to move around on these flat edges, than it does trying to climb straight up the steep slopes.  

The flat edge that is present around the Earth’s gravity well is land marked by Lagrange point 1 (or L1) lying directly between the Sun and the Earth – and Lagrange point 2 (L2) on the opposite side of the Earth directly away from the Sun.  

It’s possible for a spacecraft to orbit a Lagrange point and be carried around the Sun with very little expenditure of energy. It’s because you are essentially riding the bow wave of the Earth as it orbits the Sun – so you are carried the Sun at the same orbital speed as the Earth (30 kilometres a second) without having to burn a lot of fuel in the process.

Also the Lagrange points represent junction points to enable low energy transfer between different planetary orbits. As though the solar system’s space-time curvature makes for a giant skateboard park, it’s possible to step off L1 and follow a trajectory down to Venus – or you can coast across the flat edge of Earth’s gravity well for about 3 million kilometres to L2 and then step off on a long winding path to the L1 of Mars. Here you might rest again before perhaps shuffling across to Mars’ L2 and then on to Jupiter.  

Mathematical analysis of the gravitational interactions between three or four bodies (say, your spacecraft, the Earth and the Sun – and then add Mars too) – is complex and has some similarities with chaos theory. But such an analysis can identify interconnecting pathways right across the solar system, which ITN proponents refer to as ‘tubes’.  

The image on the left (Credit: American Scientist) shows an ITN ‘tube’ approaching Earth’s L2. At this point a cosmic hitchhiker can either double back on a trajectory towards Venus (red line), stay in orbit around L2 and tag along with Earth– or continue on through (blue line), perhaps entering another ITN tube on the way to Mars. The image on right shows a tongue-in-cheek depiction of the ITN tube network (Credit: NASA).

ITN principles have been adopted by a number of spacecraft missions to conserve fuel. Edward Belbruno proposed a low energy lunar transfer to get the Japanese probe Hiten into lunar orbit in 1991 despite it only having 10% of the fuel required for a traditional trans-lunar insertion trajectory. The manoeuvre was successful, although travel time to the Moon was five months instead of the traditional three days. NASA’s Genesis mission and the ESA’s SMART-1 are also considered to have used low energy ITN-like trajectories.  

So impoverished hitchhikers, maybe you can still have that grand tour of planets by using the ITN – but make sure you pack a towel, it will be a very long trip.

(Recommended reading: Ross, S.D. (2006) The interplanetary transport network. American Scientist 94(3), 230–237.)

Steve Nerlich

Steve Nerlich is a very amateur Australian astronomer, publisher of the Cheap Astronomy website and the weekly Cheap Astronomy Podcasts and one of the team of volunteer explainers at Canberra Deep Space Communications Complex - part of NASA's Deep Space Network.

Recent Posts

Mapping the Milky Way’s Magnetic Field in 3D

We are all very familiar with the concept of the Earth’s magnetic field. It turns…

1 hour ago

NASA’s New Solar Sail Has Launched and Deployed

Solar Sails are an enigmatic and majestic way to travel across the gulf of space.…

3 hours ago

Here’s Why We Should Put a Gravitational Wave Observatory on the Moon

Scientists detected the first long-predicted gravitational wave in 2015, and since then, researchers have been…

8 hours ago

TESS Finds its First Rogue Planet

Well over 5,000 planets have been found orbiting other star systems. One of the satellites…

1 day ago

There are Four Ways to Build with Regolith on the Moon

Over the last few years I have been renovating my home. Building on Earth seems…

1 day ago

Purple Bacteria — Not Green Plants — Might Be the Strongest Indication of Life

Astrobiologists continue to work towards determining which biosignatures might be best to look for when…

2 days ago