Categories: Astronomy

Stellar Parallax

[/caption]
Parallax is the apparent difference in the position (line of sight to) an object, when the object is viewed from different locations. So, when we observe that a star has apparently moved (not to be confused with it actually having moved – proper motion), when we look at it from two different locations on the Earth’s orbit around the Sun (i.e. on different dates), that’s stellar parallax! (And if the star does not seem to have moved? Well, its parallax is zero).

The furthest apart two locations on the Earth’s orbit can be is 2 au (two astronomical units), as when observations of an object are taken six months apart. By simple trigonometry (geometry), the distance to the object being observed is just the length of the baseline divided by the tangent of the parallax angle (the angular difference in the two lines of sight) … and since parallax angles are extremely small for stars (less than one arcsecond), the tangent of the angle is the same as the angle. This gives a natural unit of distance for stars, the parsec … which is the distance at which an object has a parallax of one arcsecond when viewed from a baseline of one au.

There was a pretty hot competition, among astronomers, to be the first to measure the parallax of a star (other than the Sun), back in the 1830s; the race was won by Friedrich Bessell (remember Bessell functions?), in 1838, with a measurement of the parallax of 61 Cygni (0.314 arcsecs, in case you were wondering; two other astronomers measured the parallax of different stars in the same year).

To date, the most accurate parallaxes (~1 milli-arcsec) are the 100,000 or so obtained by the ESA’s Hipparcos mission (which operated between 1989 and 1993; results published in 1997) … Hipparcos stands for High Precision Parallax Collecting Satellite, but is also a nod to the ancient Greek astronomer Hipparchus. The follow-up mission, Gaia (target launch date: 2012) will substantially improve on this (up to a billion stars, parallaxes as small as 20 micro-arcsec). Here’s a fun fact: Gaia will measure the gravitational deflection caused the Sun … across the whole sky (and detect that due to Mars, for stars near the line sight to it)!

Universe Today has several stories on, or featuring, stellar parallax; here are a few: New Stellar Neighbors Found, Chasing an Occultation, and Happy Birthday Johannes Kepler.

Distance in Space is an Astronomy Cast episode on this very topic!

References:
http://hyperphysics.phy-astr.gsu.edu/hbase/astro/para.html
http://starchild.gsfc.nasa.gov/docs/StarChild/questions/parallax.html

Jean Tate

Hi! When I was only six (or so), I went out one clear but windy night with my uncle and peered through the eyepiece of his home-made 6" Newtonian reflector. The dazzling, shimmering, perfect globe-and-ring of Saturn entranced me, and I was hooked on astronomy, for life. Today I'm a freelance writer, and began writing for Universe Today in late 2009. Like Tammy, I do like my coffee, European strength please. Contact me: JeanTate.UT@gmail.com

Recent Posts

Artemis Astronauts Will Deploy New Seismometers on the Moon

Back in the 1960s and 1970s, Apollo astronauts set up a collection of lunar seismometers…

5 hours ago

Ice Deposits on Ceres Might Only Be a Few Thousand Years Old

The dwarf planet Ceres has some permanently dark craters that hold ice. Astronomers thought the…

5 hours ago

The Mystery of Cosmic Rays Deepens

Cosmic rays are high-energy particles accelerated to extreme velocities approaching the speed of light. It…

7 hours ago

NASA Confirms that a Piece of its Battery Pack Smashed into a Florida Home

NASA is in the business of launching things into orbit. But what goes up must…

8 hours ago

Are Titan's Dunes Made of Comet Dust?

A new theory suggests that Titan's majestic dune fields may have come from outer space.…

15 hours ago

The Solar Wind is Stripping Oxygen and Carbon Away From Venus

The BepiColombo mission, a joint effort between JAXA and the ESA, was only the second…

1 day ago