Categories: Spitzer

Spitzer Watches Planet-Forming Disk Change Quickly

[/caption]
Something strange is going on around a young star called LRLL 31. Astronomers have witnessed a swirling disk of gas and dust which is changing rather quickly; sometimes weekly. This is likely a planet forming disk, however, planets take millions of years to form, so it’s rare to see anything change on time scales we humans can perceive. Another object appears to be pushing a clump of planet-forming material around the star, and this region is offering astronomers with the Spitzer Space Telescope a rare look into the early stages of planet formation.

Astronomer are seeing the light from this disk varying quite frequently. One possible explanation is that a close companion to the star — either a star or a developing planet — could be shoving planet-forming material together, causing its thickness to vary as it spins around the star.

“We don’t know if planets have formed, or will form, but we are gaining a better understanding of the properties and dynamics of the fine dust that could either become, or indirectly shape, a planet,” said James Muzerolle of the Space Telescope Science Institute, Baltimore, Md. Muzerolle is first author of a paper accepted for publication in the Astrophysical Journal Letters. “This is a unique, real-time glimpse into the lengthy process of building planets.”

One theory of planet formation suggests that planets start out as dusty grains swirling around a star in a disk. They slowly bulk up in size, collecting more and more mass like sticky snow. As the planets get bigger and bigger, they carve out gaps in the dust, until a so-called transitional disk takes shape with a large doughnut-like hole at its center. Over time, this disk fades and a new type of disk emerges, made up of debris from collisions between planets, asteroids and comets. Ultimately, a more settled, mature solar system like our own forms.

Before Spitzer was launched in 2003, only a few transitional disks with gaps or holes were known. With Spitzer’s improved infrared vision, dozens have now been found. The space telescope sensed the warm glow of the disks and indirectly mapped out their structures.

Muzerolle and his team set out to study a family of young stars, many with known transitional disks. The stars are about two to three million years old and about 1,000 light-years away, in the IC 348 star-forming region of the constellation Perseus. A few of the stars showed surprising hints of variations. The astronomers followed up on one, LRLL 31, studying the star over five months with all three of Spitzer’s instruments.

The observations showed that light from the inner region of the star’s disk changes every few weeks, and, in one instance, in only one week. “Transition disks are rare enough, so to see one with this type of variability is really exciting,” said co-author Kevin Flaherty of the University of Arizona, Tucson.

Both the intensity and the wavelength of infrared light varied over time. For instance, when the amount of light seen at shorter wavelengths went up, the brightness at longer wavelengths went down, and vice versa.

Muzerolle and his team say that a companion to the star, circling in a gap in the system’s disk, could explain the data. “A companion in the gap of an almost edge-on disk would periodically change the height of the inner disk rim as it circles around the star: a higher rim would emit more light at shorter wavelengths because it is larger and hot, but at the same time, the high rim would shadow the cool material of the outer disk, causing a decrease in the longer-wavelength light. A low rim would do the opposite. This is exactly what we observe in our data,” said Elise Furlan, a co-author from NASA’s Jet Propulsion Laboratory, Pasadena, Calif.

The companion would have to be close in order to move the material around so fast — about one-tenth the distance between Earth and the sun.

The astronomers plan to follow up with ground-based telescopes to see if a companion is tugging on the star hard enough to be perceived. Spitzer will also observe the system again in its “warm” mission to see if the changes are periodic, as would be expected with an orbiting companion. Spitzer ran out of coolant in May of this year, and is now operating at a slightly warmer temperature with two infrared channels still functioning.

“For astronomers, watching anything in real-time is exciting,” said Muzerolle. “It’s like we’re biologists getting to watch cells grow in a petri dish, only our specimen is light-years away.”

Source: JPL

Nancy Atkinson

Nancy has been with Universe Today since 2004, and has published over 6,000 articles on space exploration, astronomy, science and technology. She is the author of two books: "Eight Years to the Moon: the History of the Apollo Missions," (2019) which shares the stories of 60 engineers and scientists who worked behind the scenes to make landing on the Moon possible; and "Incredible Stories from Space: A Behind-the-Scenes Look at the Missions Changing Our View of the Cosmos" (2016) tells the stories of those who work on NASA's robotic missions to explore the Solar System and beyond. Follow Nancy on Twitter at https://twitter.com/Nancy_A and and Instagram at and https://www.instagram.com/nancyatkinson_ut/

Recent Posts

Webb Joins the Hunt for Protoplanets

We can't understand what we can't clearly see. That fact plagues scientists who study how…

2 hours ago

This Supernova Lit Up the Sky in 1181. Here’s What it Looks Like Now

Historical astronomical records from China and Japan recorded a supernova explosion in the year 1181.…

5 hours ago

Hubble Sees a Star About to Ignite

This is an image of the FS Tau multi-star system taken by the Hubble Space…

5 hours ago

This Black Hole is a Total Underachiever

Anyone can be an underachiever, even if you're an astronomical singularity weighing over four billion…

6 hours ago

Someone Just Found SOHO's 5,000th Comet

The Solar and Heliospheric Observatory (SOHO) was designed to examine the Sun, but as a…

6 hours ago

Astronomers Only Knew of a Single Binary Cepheid System. Now They Just Found Nine More

Measuring the distance to far away objects in space can be tricky. We don't even…

7 hours ago