This striking image was taken by the NASA/ESA Hubble Space Telescope’s Wide Field Camera 3, a powerful instrument installed on the telescope in 2009. WFC3 is responsible for many of Hubble’s most breathtaking and iconic photographs, including Pictures of the Week. Shown here, NGC 7773 is a beautiful example of a barred spiral galaxy. A luminous bar-shaped structure cuts prominently through the galaxy's bright core, extending to the inner boundary of NGC 7773's sweeping, pinwheel-like spiral arms. Astronomers think that these bar structures emerge later in the lifetime of a galaxy, as star-forming material makes its way towards the galactic centre — younger spirals do not feature barred structures as often as older spirals do, suggesting that bars are a sign of galactic maturity. They are also thought to act as stellar nurseries, as they gleam brightly with copious numbers of youthful stars. Our galaxy, the Milky Way, is thought to be a barred spiral like NGC 7773. By studying galactic specimens such as NGC 7773 throughout the Universe, researchers hope to learn more about the processes that have shaped — and continue to shape — our cosmic home.
A fuzzy form of dark matter may clump up to become the cores of galaxies, according to new research.
The traditional dark matter hypothesis, that it’s some form of cold, massive particle that hardly ever interacts with itself or with normal matter, has some difficulties. In particular, it can’t quite explain the dense cores of galaxies. Cold, heavy dark matter tends to produce extremely dense cores, far denser than what we observe.
But dark matter might be something else. Recently astronomers have hypothesized that dark matter might instead be incredibly light, far lighter than any known particle. This “fuzzy” dark matter would allow the quantum wave nature of the particles to manifest on macroscopic – even galactic – scales, allowing them to form large, diffuse clumps known as “dark stars.”
Dark stars can be incredibly huge, stretching for thousands of light-years, while still having relatively low density. This would match observations of galaxy cores, which makes this an intriguing hypothesis to follow.
In a recent letter appearing in the preprint server arXiv in December, an international collaboration of astrophysicists explored how galaxies might evolve in response to fuzzy dark matter. For this first step, they did not attempt to fully recreate an entire complex galaxy. Instead they built a simple toy model containing only two components: a large fraction of fuzzy dark matter and a smaller fraction of a simple, ideal gas.
They then simulated how these two components would interact with each other and evolve. They found that no matter how they start off, normal matter and fuzzy dark matter quickly find an equilibrium, with the two kinds of matter mixing together to make a large, stable core, surrounded by a cloud of dark matter.
The researchers pointed out that this would serve as the ideal representation of a galactic core, which contains higher – but not too high – densities of normal matter. This is the first step to confirming a key prediction of the fuzzy dark matter model. However, there is still a lot of work to be done. The next step is to build even more realistic simulations of the growth and evolution of galaxies, tracking how fuzzy dark matter, and the dark stars they create, influences their local environments. Then we can take those results and compare to observations to see if this idea is worth investigating even more.
Hypervelocity stars have been seen before but NASA scientists have just identified a potential record-breaking…
Finding alien life may have just got easier! If life does exist on other worlds…
MSL Curiosity is primarily a rockhound. It's at Gale Crater, examining the rocks there and…
Venus is very variable. Its surface constantly changes from volcanic activity, and the difference between…
Hydrogel protection could be crucial for safe human space exploration. It’s a key problem that…
When massive stars reach the end of their life cycle, they undergo gravitational collapse and…