Asteroids

Could We Use An Asteroid to Shield Astronauts On Their Way to Mars?

Radiation is a primary concern for long-duration human spaceflight, such as the planned trips to Mars, which are the stated goal of organizations such as NASA and SpaceX. Shielding is the standard way to protect astronauts from radiation during those flights. However, shielding is heavy and, therefore, expensive when it is launched off the Earth. What if, instead, astronauts could hitch a ride on a giant mass of shielding already in space that will take them directly to their destination? That is the basic thought behind a paper from Victor Reshetnyk and his student at Taras Shevchenko National University in Kyiv. 

They looked at data collected by NASA’s Horizons service and analyzed the orbits of over 35,000 Near Earth Objects (NEOs) for their trajectories to see if their paths would cross somewhere between the binary pairs of Earth-Venus, Earth-Mars, or Mars-Venus. If so, then in theory, they could be used as shielding from the deadly radiation astronauts would have to either suffer from or shield against on the trip.

Given the sheer amount of objects they looked at, they were bound to find some good candidates – and they did, with an estimated 525 making “fast” transfers of less than 180 days. They then further narrowed this list down to a reasonable speed during the approach to the planet they would start from – essentially to make sure that a crewed spacecraft could actually catch up to the asteroid without burning an absurd amount of fuel.

Fraser discusses how to make an asteroid a habitat.

That lowered the total amount of candidates down to 120, with the following breakdown:

  • Earth -> Venus: 44
  • Earth -> Mars: 17
  • Mars -> Earth: 13
  • Mars -> Venus: 2
  • Venus -> Earth: 38
  • Venus -> Mars: 6

In other words, there were plenty of options for hitching a ride. Granted, none of these would be exceptionally roomy – the largest is estimated to have a diameter of only .37 km. However, there is still plenty of room to fit a spaceship, as long as it’s not a Star Destroyer or Battleship from 40K.

Additionally, the authors found some asteroids that had more unique trajectories. Eleven had the possibility of doing “multiple” transfers, meaning they could go from Earth to Venus and then back or vice versa, but only one would do the same for the Venus to Mars trip. Two could even do a “double” transfer, meaning they could go from Earth to Venus to Mars or from Mars to Venus to Earth in less than one year. Anything beyond that wasn’t possible, though – they didn’t find any asteroids akin to an “Aldrin Cycler” that would go between the planets indefinitely on a known orbit.

Capturing an asteroid would be one way to use it for shielding – as Fraser discusses.

That’s not to say that asteroid doesn’t already exist – we might just not have found it yet. NEO Surveyor, a NASA mission designed to launch in 2028 to find 90% of all NEOs larger than 140m in diameter, could increase the number of known NEOs by an order of magnitude.

Using any of them for a massive radiation shield for a crewed mission would take much more dedicated work, though. Any such transformation is decades away at least – but the place to start is to find the right ones, and this paper contributes to that effort.

Learn More:
A.S. Kasianchuk & V. M. Reshetnyk – The search for NEOs as potential candidates for use in space missions to Venus and Mars
UT – A New Paper Shows How To Change An Asteroid Into A Space Habitat – In Just 12 Years
UT – Rubble Pile Asteroids Might be the Best Places to Build Space Habitats
UT – NASA Makes Asteroid Defense a Priority, Moving its NEO Surveyor Mission Into the Development Phase

Lead Image:
Illustration of the asteroid Bennu.
Credit: NASA Jet Propulsion Laboratory

Andy Tomaswick

Recent Posts

How to Debate a Flat-Earther

The problem with debating a flat-Earther is that they didn’t arrive at their conclusions from…

12 hours ago

LIGO Has Detected Unusual Black Holes Merging, But they Probably Don’t Explain Dark Matter

The traditional theory of black hole formation seems to struggle to explain how black holes…

14 hours ago

Gravitational Waves Could Give Us Insights into Fast Radio Bursts

Fast Radio Bursts (FRBs) are mysterious pulses of energy that can last from a fraction…

15 hours ago

As We Explore the Solar System, Radiation Will Be One of Our Greatest Threats

The Sun can kill. Until Earth developed its ozone layer hundreds of millions of years…

18 hours ago

LIGO Fails to Find Continuous Gravitational Waves From Pulsars

In February 2016, scientists working for the Laser Interferometer Gravitational-Wave Observatory (LIGO) made history by…

19 hours ago

Astronauts Deploy the First Wooden Satellite into Orbit

Wood has been a mainstay of human machines and construction for millennia. Its physical properties…

21 hours ago