Gravitational Waves

Gravitational Lenses Could Pin Down Black Hole Mergers with Unprecedented Accuracy

Gravitational wave astronomy has been one of the hottest new types of astronomy ever since the LIGO consortium officially detected the first gravitational wave (GW) back in 2016. Astronomers were excited about the number of new questions that could be answered using this sensing technique that had never been considered before. But a lot of the nuance of the GWs that LIGO and other detectors have found in the 90 gravitational wave candidates they have found since 2016 is lost. 

Researchers have a hard time determining which galaxy a gravitational wave comes from. But now, a new paper from researchers in the Netherlands has a strategy and developed some simulations that could help narrow down the search for the birthplace of GWs. To do so, they use another darling of astronomers everywhere—gravitational lensing.

Importantly, GWs are thought to be caused by merging black holes. These catastrophic events literally distort space-time to the point where their merger causes ripples in gravity itself. However, those signals are extraordinarily faint when they reach us—and they are often coming from billions of light-years away. 

Detectors like LIGO are explicitly designed to search for those signals, but it’s still tough to get a strong signal-to-noise ratio. Therefore, they’re also not particularly good at detailing where a particular GW signal comes from. They can generally say, “It came from that patch of sky over there,” but since “that patch of sky” could contain billions of galaxies, that doesn’t do much to narrow it down.

Fraser discusses the crazy physics that happen when black holes run into each other.

But astronomers lose a lot of context regarding what a GW can tell them about its originating galaxy if they don’t know what galaxy it came from. That’s where gravitational lensing comes in.

Gravitational lenses are a physical phenomenon whereby the signal (in most cases light) coming from a very faraway object is warped by the mass of an object that lies between the further object and us here on Earth. They’re responsible for creating “Einstein Rings,” some of the most spectacular astronomical images.

Light is not the only thing that can be affected by mass, though—gravitational waves can, too. Therefore, it is at least possible that gravitational waves themselves could be warped by the mass of an object between it and Earth. If astronomers are able to detect that warping, they can also tell which specific galaxy in an area of the sky the GW sign is coming from. 

Once astronomers can track down the precise galaxy, creating a gravitational wave, the sky is (not) the limit. They can narrow down all sorts of characteristics not only of the wave-generating galaxy itself but also of the galaxy in front of it, creating the lens. But how exactly should astronomers go about doing this work?

Fraser celebrates the workhorses of the GW detector stable – LIGO and VIRGO – coming back online after upgrades.

That is the focus of the new paper from Ewoud Wempe, a PhD student at the University of Groningen, and their co-authors. The paper details several simulations that attempt to narrow down the origin of a lensed gravitational wave. In particular, they use a technique similar to the triangulation that cell phones use to determine where exactly they are in relation to GPS satellites. 

Using this technique can prove fruitful in the future, as the authors believe there are as many as 215,000 potential GW lensed candidates that would be detectable in data sets from the next generation of GW detectors. While those are still coming online, the theoretical and modeling worlds remain hard at work trying to figure out what kind of data would be expected for different physical realities of this newest type of astronomical observation.

Learn More:
Wempe et al. – On the detection and precise localization of merging black holes events through strong gravitational lensing
UT – After Decades of Observations, Astronomers have Finally Sensed the Pervasive Background Hum of Merging Supermassive Black Holes
UT – A Neutron Star Merged with a Surprisingly Light Black Hole
UT – When Black Holes Merge, They’ll Ring Like a Bell

Lead Image:
Example of a gravitational lens.
Credit – Hubble Telescope / NASA / ESA

Andy Tomaswick

Recent Posts

White Dwarfs Could Be More Habitable Than We Thought

White dwarfs are the remnants of once brilliant main sequence stars like our Sun. They're…

48 minutes ago

Dramatically Decreasing the Time it Takes to Measure Asteroid Distances

We all know that asteroids are out there, that some of them come dangerously close…

3 hours ago

Should Astronauts Add Jumping to their Workout Routine?

It’s a familiar sight to see astronauts on board ISS on exercise equipment to minimise…

8 hours ago

Do We Live in a Special Part of the Universe? Here’s How to Find Out

One of the basic principles of cosmology is the Cosmological Principle. It states that, no…

9 hours ago

A Hyper Velocity Star Found with an Exoplanet Hanging on for Dear Life

Hypervelocity stars have been seen before but NASA scientists have just identified a potential record-breaking…

22 hours ago

Efforts to Detect Alien Life Advanced by Simple Microbe Mobility Test

Finding alien life may have just got easier! If life does exist on other worlds…

22 hours ago