Categories: Black Holes

Next Generation Telescopes Could Detect the Direct Collapse of Enormous Black Holes Near the Beginning of Time

The first black holes to appear in the universe may have formed from the direct collapse of gas. When they collapsed, they released a flood of radiation, including radio waves. A new study has found that the next generation of massive radio telescopes may be able to detect these bursts, giving precious insights into a critical epoch in the history of the universe.

Astronomers have identified supermassive black holes stretching almost back to the beginning of the universe, when it was less than 700 million years old. The usual routes of black hole formation (via the deaths of massive stars, followed by gorging on surrounding material) have trouble producing such giant black holes so early in the history of the universe.

One way to build giant black holes is to have them simply…appear. If a large enough cloud of gas (say, a million times the mass of the sun) can collapse quickly enough, then stars won’t have time to form and the cloud directly forms a giant black hole.

This is a hypothesis, and hypotheses need to be tested. Surely such a momentous event would release enormous amount of electromagnetic radiation, some of which may be detected by the James Webb Space Telescope, the Nancy Grace Roman Telescope, and Euclid. But those detections would be very tenuous, even in best-case scenarios (i.e., insanely bright emission during the collapse process).

However, in a recent study a team of astronomers found a more encouraging pathway to observing the potential direct collapse of giant black holes: radio waves.

When the black holes first collapse, they form accretion disks around them as material swirls inwards. Those accretion disks power up insane amounts of radio emission. It’s through this radio emission that astronomers first observed giant black holes, known as quasars. This same process would play out in the early universe, and since it’s so scaled up in power, it might be detectable in the present day.

The researchers found that the upcoming Square Kilometer Array, a massive telescope array spread across South Africa and Western Australia, would be able to detect this kind emission, hopefully resolving this critical mystery from the deep past.

Paul M. Sutter

Astrophysicist, Author, Host | pmsutter.com

Recent Posts

Artemis Astronauts Will Deploy New Seismometers on the Moon

Back in the 1960s and 1970s, Apollo astronauts set up a collection of lunar seismometers…

13 hours ago

Ice Deposits on Ceres Might Only Be a Few Thousand Years Old

The dwarf planet Ceres has some permanently dark craters that hold ice. Astronomers thought the…

14 hours ago

The Mystery of Cosmic Rays Deepens

Cosmic rays are high-energy particles accelerated to extreme velocities approaching the speed of light. It…

16 hours ago

NASA Confirms that a Piece of its Battery Pack Smashed into a Florida Home

NASA is in the business of launching things into orbit. But what goes up must…

17 hours ago

Are Titan's Dunes Made of Comet Dust?

A new theory suggests that Titan's majestic dune fields may have come from outer space.…

24 hours ago

The Solar Wind is Stripping Oxygen and Carbon Away From Venus

The BepiColombo mission, a joint effort between JAXA and the ESA, was only the second…

1 day ago