Categories: Black Holes

Next Generation Telescopes Could Detect the Direct Collapse of Enormous Black Holes Near the Beginning of Time

The first black holes to appear in the universe may have formed from the direct collapse of gas. When they collapsed, they released a flood of radiation, including radio waves. A new study has found that the next generation of massive radio telescopes may be able to detect these bursts, giving precious insights into a critical epoch in the history of the universe.

Astronomers have identified supermassive black holes stretching almost back to the beginning of the universe, when it was less than 700 million years old. The usual routes of black hole formation (via the deaths of massive stars, followed by gorging on surrounding material) have trouble producing such giant black holes so early in the history of the universe.

One way to build giant black holes is to have them simply…appear. If a large enough cloud of gas (say, a million times the mass of the sun) can collapse quickly enough, then stars won’t have time to form and the cloud directly forms a giant black hole.

This is a hypothesis, and hypotheses need to be tested. Surely such a momentous event would release enormous amount of electromagnetic radiation, some of which may be detected by the James Webb Space Telescope, the Nancy Grace Roman Telescope, and Euclid. But those detections would be very tenuous, even in best-case scenarios (i.e., insanely bright emission during the collapse process).

However, in a recent study a team of astronomers found a more encouraging pathway to observing the potential direct collapse of giant black holes: radio waves.

When the black holes first collapse, they form accretion disks around them as material swirls inwards. Those accretion disks power up insane amounts of radio emission. It’s through this radio emission that astronomers first observed giant black holes, known as quasars. This same process would play out in the early universe, and since it’s so scaled up in power, it might be detectable in the present day.

The researchers found that the upcoming Square Kilometer Array, a massive telescope array spread across South Africa and Western Australia, would be able to detect this kind emission, hopefully resolving this critical mystery from the deep past.

Paul M. Sutter

Astrophysicist, Author, Host |

Recent Posts

The Moon’s Ancient Volcanoes Could Have Created Ice Sheets Dozens of Meters Thick

Everyone loves looking at the Moon, especially through a telescope. To see those dark and…

6 hours ago

Spacesuits are Leaking Water and NASA is Holding off any Spacewalks Until They can Solve the Problem

NASA's spacesuits are getting old. The extra-vehicular mobility units - EMUs for short - were…

9 hours ago

Starliner Launches Successfully, but Two of its Thrusters Failed

Boeing's CST-100 Starliner successfully launched and rendezvoused with the ISS, a crucial step towards performing…

9 hours ago

NASA is Building a Mission That Will Refuel and Repair Satellites in Orbit

NASA is planning a mission to demonstrate the ability to repair and upgrade satellites in…

18 hours ago

The “Doorway on Mars” is More Like a Dog Door

Mars Curiosity rover took a panorama of this rock cliff during its trip across Mount…

1 day ago

Thanks to Gaia, Astronomers are Able to Map Out Nebulae in 3D

In this 2D image of nebulae in the Orion Molecular Complex, the submillimetre-wavelength glow of…

1 day ago