Categories: Radio Astronomy

A Lunar Farside Telescope Could Detect Exoplanets Through Their Magnetospheres

It’s difficult to do radio astronomy on Earth, and it’s getting harder every day. Our everyday reliance on radio technology means that radio interference is a constant challenge, even in remote areas. And for some wavelengths even the Earth’s atmosphere is a problem, absorbing or scattering radio light so that Earth-based telescopes can’t observe these wavelengths well. To overcome these challenges, astronomers have proposed putting a radio telescope on the far side of the Moon.

Proposed design of a radio telescope in a lunar crater. Credit: Saptarshi Bandyopadhyay

With no atmosphere to absorb light, the Moon provides a perfect view of the radio sky. The far side of the Moon is also shielded from all the radio signals of Earth. If we were to build a radio dish in a lunar crater, similar to the way Arecibo was built in a natural valley, then we would have the most sensitive radio telescope ever built. It would be so sensitive that we could use it to discover exoplanets.

Most of what we know about exoplanets comes from visible light, typically when an exoplanet passes in front of its star from our vantage point. Exoplanets can also be bright in infrared, and so the exoplanets we’ve observed directly are seen in infrared light. But there are times when an exoplanet can emit radio light. Jupiter, for example, is quite bright in radio due to its strong magnetic field and intense aurora. Some large exoplanets and brown dwarfs have strong enough aurora that we can see their radio glow from Earth.

Simulation of aurora on an exoplanet. Credit: Anthony Sciola

Earth-sized exoplanets likely aren’t bright enough in radio wavelengths to see from Earth, but would they be visible from a lunar radio telescope? The answer to that question was recently published in The Astrophysical Journal. In this study, the team simulated the effects of a planet’s magnetosphere on the radio light it emits, specifically the aurora produced during the active periods of the planet’s star.

One of the things they found was that while visible light aurora tend to cluster at the magnetic poles of a planet, radio aurora occur farther from the poles and are more spread out. Radio aurora happen on Earth, but we can’t see them because Earth’s ionosphere absorbs the light. Our ionosphere would also block any radio aurora from Earth-like exoplanets. But a lunar observatory would be able to see these radio aurora, even when it comes from the dark side of the planet.

Based on the simulations of this study, the strength and stability of the magnetosphere could be determined from lunar radio observations. This is particularly important for exoplanets in the potentially habitable zone of a star. Earth is a haven for life because it has a rich atmosphere, which is a direct result of its strong magnetosphere. By studying the magnetospheres of exoplanets, we could learn whether they too have a rich atmosphere.

NASA is currently studying how we might build a radio telescope on the Moon. If it is built in the coming decades, we might finally see the aurora glow of a distant Earth.

Reference: Sciola, Anthony, et al. “Incorporating Inner Magnetosphere Current-driven Electron Acceleration in Numerical Simulations of Exoplanet Radio Emission.” The Astrophysical Journal 914.1 (2021): 60.

Brian Koberlein

Brian Koberlein is an astrophysicist and science writer with the National Radio Astronomy Observatory. He writes about astronomy and astrophysics on his blog. You can follow him on YouTube, and on Twitter @BrianKoberlein.

Recent Posts

NASA Launches DART, to Learn how to Defend the Earth From a Future Asteroid Impact

NASA's Double Asteroid Redirection Test (DART) just launched and will intercept a Near-Earth Asteroid (NEA)…

10 hours ago

It’s Time to Stop Doing Anti-Satellite Tests

Earlier this month, the Russian military conducted an anti-satellite (ASAT) missile test, launching a PL19…

2 days ago

Stars Getting Kicked out of the Milky Way can Help us map its Dark Matter Halo

Hypervelocity stars may allow us to map dark matter as they leave the Milky Way.

2 days ago

A Machine-Learning Algorithm Just Found 301 Additional Planets in Kepler Data

Using a new type of deep-learning algorithm, a team of NASA scientists have detected 301…

2 days ago

Astronomers Find a Planet That Orbits its Star in Just 16 HOURS!

Mercury is the speed champion in our Solar System. It orbits the Sun every 88…

3 days ago

The Severe Pacific Northwest Flooding Seen From Space

The severe flooding that happened this month was captured by Earth Observation satellites, showing the…

3 days ago