Parker Solar Probe Captured Images of Venus on its way to the Sun

Last summer, the Parker Solar Probe flew past Venus on its way to fly closer to the Sun. In a bit of a surprise, one of the spacecraft’s cameras, the Wide-field Imager for Parker Solar Probe, or WISPR, captured a striking image of the planet’s nightside from 7,693 miles (12380 km) away.

The surprise of the image was that WISPR – a visible light camera – seemingly captured the Venus’ surface in infrared light.

Mission scientists expected WISPR to capture Venus’ thick, carbon dioxide clouds, which normally block views of the surface. But instead, the camera was able see through the clouds, revealing the dark-tinted shape of Aphrodite Terra, a highland area near Venus’ equator.  The feature appears dark because of its lower temperature, about 85 degrees Fahrenheit (30 degrees Celsius) cooler than its surroundings.

“WISPR is tailored and tested for visible light observations,” said Angelos Vourlidas, the WISPR project scientist. “We expected to see clouds, but the camera peered right through to the surface.”

While the Parker Solar Probe’s focus is the Sun, NASA says that Venus plays a critical role in the mission.  The spacecraft whizzes past Venus a total of seven times over the course of its seven-year mission, and uses the planet for a gravity assist. This allows the spacecraft to fly closer and closer to the Sun.  

The flyby in July 2020 was the third of the seven gravity assists.

NASA’s Parker Solar Probe had an up-close view of Venus when it flew by the planet in July 2020. Some of the features seen by scientists are labeled in this annotated image. The dark spot appearing on the lower portion of Venus is an artifact from the WISPR instrument.
Credits: NASA/Johns Hopkins APL/Naval Research Laboratory/Guillermo Stenborg and Brendan Gallagher

“WISPR effectively captured the thermal emission of the Venusian surface,” said Brian Wood, an astrophysicist and WISPR scientist at the US Naval Research Laboratory in Washington, DC. Wood added that the image was similar to those taken by Japan’s Akatsuki spacecraft, which is currently studying Venus, and includes cameras that can capture light at near-infrared wavelengths.

The bright streaks in the image are typically caused by a combination of charged particles — called cosmic rays — and sunlight reflected by grains of space dust, and particles of material expelled from the spacecraft’s structures after impact with those dust grains. The number of streaks varies along the orbit or when the spacecraft is traveling at different speeds, and scientists are still in discussion about the specific origins of the streaks here.

Here’s a look at a “cleaned up” version by imaging enthusiast (and former UT writer) Jason Major:

WISPR is designed to take images of the solar corona and inner heliosphere in visible light, as well as images of the solar wind and its structures as they approach and fly by the spacecraft. At Venus, the camera detected a bright rim around the edge of the planet that may be nightglow — light emitted by oxygen atoms high in the atmosphere that recombine into molecules in the nightside.

This surprise observation sent the WISPR team back to the lab to measure the instrument’s sensitivity to infrared light.

Illustration of the Parker Solar Probe spacecraft approaching the Sun. Credits: Johns Hopkins University Applied Physics Laboratory

If WISPR it indeed can see in infrared, it could provide an unexpected new way for the mission to study dust circling the Sun. To test it out, he WISPR team planned a set of similar observations of the Venusian nightside during Parker Solar Probe’s latest Venus flyby – which just occurred on Feb. 20, 2021. Mission team scientists expect to receive and process that data for analysis by the end of April.

But if the appearance of Aphrodite Terra was a type of “fluke,” it could mean WISPR discovered a previously unknown opening in the thick Venusian clouds, providing a fleeting window that showed portions of the planet’s surface.

“Either way,” Vourlidas said, “some exciting science opportunities await us.”

Source: NASA

Nancy Atkinson

Nancy has been with Universe Today since 2004. She is the author of a new book on the Apollo program, "Eight Years to the Moon," which shares the stories of 60 engineers and scientists who worked behind the scenes to make landing on the Moon possible. Her first book, "Incredible Stories from Space: A Behind-the-Scenes Look at the Missions Changing Our View of the Cosmos" tells the stories of those who work on NASA's robotic missions to explore the Solar System and beyond.

Recent Posts

NASA’s VIPER Rover Will Hunt for Water Near Nobile Crater at Moon’s South Pole

NASA says its VIPER rover will head for the western edge of Nobile Crater near…

7 hours ago

How Could we Light our Cities and Still See the Night Sky?

The night sky is a part of humanity's natural heritage. Gazing up at the heavens…

9 hours ago

Accurately Forecasting the Weather on Mars and Titan

Even meteorologists who forecast the weather on Earth admit that they can’t always accurately predict…

13 hours ago

The Moon was Pummeled Even Harder by Asteroids Than it Looks

The Moon's pitted surface tells a tale of repeated impacts over a long period of…

14 hours ago

Astronomers See Carbon-Rich Nebulae Where Planets are Forming

Understanding the birth of a planet is a challenging puzzle. We know that planets form…

1 day ago

ExoMars Will be Drilling 1.7 Meters to Pull its Samples From Below the Surface of Mars

The ESA just finished testing the drill that will allow the Rosalind Franklin rover to…

2 days ago