Categories: Gravitational Waves

All The Gravitational Waves Detected So Far

Few events in the astronomy community were received with more fanfare than the first detection of gravitational waves, which took place on September 14th, 2015.  Since then, different events have been recorded using the same techniques.  Many include data from other observational platforms, as the events that normally create gravitational waves are of interest to almost everyone in the astronomical community.  Black hole and neutron star mergers and the like provide a plethora of data to understand the physics that happen under such extreme conditions.

To distribute that data equitably, researchers at LIGO, one of the main observatories for gravitational waves, have released a data set that contains information about all 50 confirmed gravitational wave events that have taken place since observations began.  What’s more, a team from the Cardiff University made a tool that makes it much easier to navigate the data.  

Graphic showing the how far away some of the events for each observatory were. O2 is the second observing period, whereas O3a is the first part of the third observing period.
Credit: LIGO-Virgo Collaboration / Eve Chase / Caitlin Rose / Northwestern / University of Wisconsin-Milwaukee.

That data was primarily collected by three different gravitational wave observatories – two different sites for LIGO (LIGO Livingston in Louisiana and LIGO Hanford in Washington State) as well as the Virgo interferometer, located in Italy.  The events that were captured included the most observed astronomical event ever recorded – the merging of two neutron stars that took place on August 17th 2017.

UT video describing one of the events that can cause gravitational waves – black hole mergers.

Unfortunately, LIGO’s most recent observational session was cut slightly short by COVID.  The observatory is currently undergoing upgrades to increase its sensitivity, and is expected to be back online in around June 2022.  In the meantime, amateur and professional astronomers alike will have plenty to pour over in this new catalog before any new gravitational waves are detected.

Learn More:
Armagh Observatory: The largest-ever catalog of gravitational waves released
LIGO: GWTC-2: An Expanded Catalog of Gravitational-Wave Detections
University of Cardiff: LIGO-Virgo Compact Binary Catalogue

Lead Image: Data from the set of gravitational waves.
Credit: Cardiff University Gravitational Exploration Institute Data

Andy Tomaswick

Recent Posts

New Research may Explain how Supermassive Black Holes in the Early Universe Grew so Fast

Not long ago, the James Webb Space Telescope (JWST) peered into Cosmic Dawn, the cosmological…

4 hours ago

Early Earth's Oceans of Magma Accelerated the Moon's Departure

When the Earth was struck by a Mars-sized planet in its early history, it ejected…

8 hours ago

Could the ESA’s PLATO Mission Find Earth 2.0?

Currently, 5,788 exoplanets have been confirmed in 4,326 star systems, while thousands more candidates await…

1 day ago

Zap! A Black Hole Scores a Direct Hit With its Jet

Most galaxies are thought to play host to black holes. At the center of Centaurus…

1 day ago

Does Life Really Need Planets? Maybe Not

Do we have a planetary bias when it comes to understanding where life can perpetuate?…

1 day ago

Tidal Steams of Interstellar Objects May Flow Through the Milky Way Like Braided Rivers

Interstellar objects visit our solar system all the time. A new study shows they likely…

1 day ago