Categories: Physics

There’s a new record for the shortest time measurement: how long it takes light to cross a hydrogen molecule

To measure small differences in time, you need a really tiny clock, and researchers in Germany have discovered the smallest known clock: a single hydrogen molecule. Using the travel of light across the length of that molecule, those scientists have measured the smallest interval of time ever: 247 zeptoseconds. Don’t know what a “zepto” is? Read on…

When a bit of light, called a photon, hits an atom with enough energy, it can kick the electron out of that atom and send it flying. When we carefully set up this situation in a laboratory, we can measure the electron shooting out of the atom and deduce when it got the big kick from the incoming photon.

With more than one electron, you can turn this arrangement into a tiny, very fast clock. The photon will hit one electron, and then the other, and by measuring the delay between outgoing electrons, we can measure the amount of time it takes for the photon to travel from one electron to the other within the molecule.

For years scientists have been building various atomic contraptions to do exactly this, finding smaller and smaller clocks as they go. Recently, a team at Goethe University in Germany managed to accomplish this with only a single hydrogen molecule (H2): two protons sharing two electrons.

Using an X-ray beam at Deutsches Elektronen-Synchrotron (DESY), a particle accelerator in Hamburg, the team observed the slight differences in timing when the two electrons raced out of the molecule when shot with the X-rays, as reported in the October issue of Science.

From there, they could calculate the time it took for the X-ray photons to make the jump from one end of the molecule to the other. And that time difference amounted to barely anything at all: 247 zeptoseconds. One zeptosecond is a trillionth of a billionth of a second.

If you want that written out (and I know you do), that looks like this: 0.000000000000000000247 seconds.

It’s a new world record for the shortest time interval ever recorded, and further work in this field helps us understand the detailed structures of molecules and their relationship to incoming photons, which has applications everywhere from chemistry to nuclear power.

Paul M. Sutter

Astrophysicist, Author, Host | pmsutter.com

Recent Posts

ALMA Detects Hallmark “Wiggle” of Gravitational Instability in Planet-Forming Disk

According to Nebula Theory, stars and their systems of planets form when a massive cloud…

8 hours ago

Largest Dark Matter Detector is Narrowing Down Dark Matter Candidate

In 2012, two previous dark matter detection experiments—the Large Underground Xenon (LUX) and ZonEd Proportional…

9 hours ago

Could Comets have Delivered the Building Blocks of Life to “Ocean Worlds” like Europa, Enceladus, and Titan too?

Throughout Earth's history, the planet's surface has been regularly impacted by comets, meteors, and the…

1 day ago

There’s More Water Inside Planets Than We Thought

When you walk across your lawn or down the street, you move on the surface…

1 day ago

Why Did Copernicus Reject Geocentrism?

Popular science history paints a picture of the Greek geocentric model dominating astronomical thought beginning…

2 days ago

China Will Launch its Mars Sample Return Mission in 2028

While NASA's Mars Sample Return mission has experienced a setback, China is still moving forward…

2 days ago