The heliosphere looks a lot weirder than we originally thought | Universe Today

The heliosphere looks a lot weirder than we originally thought

Every second of every day, our sun spits out a stream of tiny high-energy particles, known as the solar wind. This wind blows throughout the solar system, extending far beyond the orbits of the planets and out into interstellar space.

But the farther from the sun the wind gets, the more slowly it streams, changing from the raging torrent that the inner planets experience (strong enough to cause the aurora) into nothing more than an annoying drizzle. And far enough away – about twice the orbit of Neptune – it meets and mingles with all the random bits of energetic junk just floating around amongst the stars.

This boundary forms a bubble, where the solar wind gives way to the interstellar medium, and is known as the heliosphere.

If life were completely simple and boring, the heliosphere would be…a sphere. The solar wind would slow down at the same radius all around the system, totally equally.

NASA’s New Horizons spacecraft (when it still lived on the Earth). Data from the far-flung probe is helping us understand the heliosphere.

But life is neither simple nor boring.

For a long time researchers thought that the heliosphere might form a comet-like teardrop shape. Our system is moving through the galaxy, and so our heliosphere should be a bit blunter on one side and a bit long and tapered on the other.

Naturally, it’s a bit more complicated than that.

Researchers across the world have been using a slew of new data from the outer solar system to put together the puzzle of our heliosphere. First we have the twin Voyager probes, which are currently pushing past the heliosphere and into interstellar space. We also have New Horizons, which will soon follow them into the void. And lastly we have the late Cassini mission, which collected a wealth of outer-system information in its years orbiting Saturn.

Recently, a group of researchers led by Merav Opher at Boston University put together a model of our heliosphere, incorporating all the known data.

And the result? A weird-looking, lumpy, puffy croissant.

The odd shape comes from two sources of high-energy particles in the outer solar system. The first is the solar wind itself, generated near the surface of the sun and sent blasting. The second is a population of neutral particles that slip and sneak their way into the solar system, only for one of their electrons to get ripped off, turning them into their own version of the solar wind.

The interaction between these two groups is, needless to say, complex, and their electromagnetic dance weaves together the surprising shape.

That shape matters, because the sun isn’t the only source of high-energy particles in the cosmos. Sources across the universe spew out radiation, and the solar wind does a great job at deflecting a good fraction of it, preventing it from harming our fragile DNA. But the details of the shape can tell us how well the heliosphere works as a force field – and how life around other planets might fare.

Paul M. Sutter

Astrophysicist at Ohio State | Agent to the Stars | pmsutter.com

Recent Posts

About 3.5 Million Years Ago, a Stream of Gas Outside the Milky Way Would Have Lit Up the Night Sky

It's a truism to point out that modern humans have only been around for the…

49 mins ago

What are the Odds of Life Emerging on Another Planet?

A new study by Prof. Kipping of Columbia University indicates that extraterrestrial life should be…

3 hours ago

Study of 200,000 Galaxies Reveals the Entire Universe Might Have Been Spinning in One Direction Early On

A new study finds evidence that the universe as a whole is rotating, and that…

5 hours ago

Barred Spiral NGC 3895 Captured by Hubble

NGC 3895 is a barred spiral galaxy in the Ursa Major constellation. It's about 145…

5 hours ago

New Simulations Show How Black Holes Grow, Through Mergers and Accretion

One of the most pressing questions in astronomy concerns black holes. We know that massive…

22 hours ago

Want to Mine Ice on the Moon? Scientists Create a Map for Where to Start

The first lunar maps consisted of simply the best images of the Moon from Earth-based…

23 hours ago