Categories: Exoplanets

During A Lunar Eclipse, It’s A Chance To See Earth As An Exoplanet

There are several ways to look for alien life on distant worlds. One is to listen for radio signals these aliens might send, such as SETI and others are doing, but another is to study the atmospheres of exoplanets to find bio-signatures of life. But what might these signatures be? And what would they appear to our telescopes?

Ideally, it would be nice to observe an exoplanet where we know life exists, and study how it appears compared to other, lifeless exoplanets. The problem is, there’s only one planet known to have life, and we’re on it. We can’t travel light-years away and then observe Earth as if it were an exoplanet. But we can do the next best thing: observe the light passing through Earth’s atmosphere during a lunar eclipse.

Image of the lunar eclipse taken just before the midpoint of totality. Taken with a modified Canon 450D + Celestron C6-N telescope. f/4 ISO400 4s exposure. Credit and copyright: Fred Locklear.

A lunar eclipse occurs when the Moon passes into the shadow of Earth. It typically takes on a deep red glow because of Earth’s atmosphere. During a lunar eclipse, the Earth completely blocks the Sun as seen from the Moon, but some sunlight passes through Earth’s atmosphere and is refracted toward the Moon. If you were standing on the Moon during a lunar eclipse, you would likely see Earth a ring of fire. A red glow of air-filtered sunlight.

This filtering effect is how we study the atmospheres of exoplanets. When an exoplanet passes in front of its star, some of the starlight passes through the planet’s atmosphere. Atoms and molecules in the atmosphere absorb certain wavelengths of light depending on their composition. By studying the absorption lines of the atmosphere astronomers can detect molecules such as water or carbon dioxide.

Absorption lines during a lunar eclipse, showing water and oxygen in Earth’s atmosphere. Credit: AIP/Strassmeier

During the total lunar eclipse of January 2019, a team of astronomers studied Earth’s atmosphere as if it were an exoplanet. They didn’t observe Earth from the Moon, but rather looked at the spectrum of light reflected from the Moon’s surface. By observing the spectrum of this reflected light, the team found strong signatures of water and oxygen. From high-resolution spectral observations, the team also found traces of sodium, calcium, and potassium.

This study doesn’t tell us anything new about our atmosphere, but it does show how even trace elements can be found in the atmosphere of an exoplanet. This could play a key role in discovering life elsewhere.

Reference: Strassmeier, K. G., et al. “High-resolution spectroscopy and spectropolarimetry of the total lunar eclipse January 2019.

Brian Koberlein

Brian Koberlein is an astrophysicist and science writer with the National Radio Astronomy Observatory. He writes about astronomy and astrophysics on his blog. You can follow him on YouTube, and on Twitter @BrianKoberlein.

Recent Posts

Hot Stars Blast Away at gas Giants Until Only Their Rocky Cores Remain

We don't see many Neptune-sized worlds closely orbiting their star. That may be because the…

22 hours ago

JWST’s Science, Surgeon Robot for ISS, Booster 7 Test Fire

James Webb delivers scientific results, SLS and Starship go closer to their maiden flights, remote…

1 day ago

MIT Researchers Propose Space Bubbles to Stop Climate Change

Climate change is a real problem. Human caused outputs of greenhouse gases like carbon dioxide…

1 day ago

In Wildly Different Environments, Stars End Up Roughly the Same

When you look at a region of the sky where stars are born, you see…

2 days ago

Primordial Black Holes Could Have Triggered the Formation of Supermassive Black Holes

Computer simulations show the role primordial black holes may have played in the early universe,…

2 days ago

Why Betelgeuse Dimmed

Using data from Hubble and other observatories, a team of scientists have determine the cause…

3 days ago