Advanced Civilizations Could be Communicating with Neutrino Beams. Transmitted by Clouds of Satellites Around Neutron Stars or Black Holes | Universe Today

Advanced Civilizations Could be Communicating with Neutrino Beams. Transmitted by Clouds of Satellites Around Neutron Stars or Black Holes

In 1960, famed theoretical physicist Freeman Dyson made a radical proposal. In a paper titled “Search for Artificial Stellar Sources of Infrared Radiation” he suggested that advanced extra-terrestrial intelligences (ETIs) could be found by looking for signs of artificial structures so large, they encompassed entire star systems (aka. megastructures). Since then, many scientists have come up with their own ideas for possible megastructures.

Like Dyson’s proposed Sphere, these ideas were suggested as a way of giving scientists engaged in the Search for Extra-Terrestrial Intelligence (SETI) something to look for. Adding to this fascinating field, Dr. Albert Jackson of the Houston-based technology company Triton Systems recently released a study where he proposed how an advanced ETI could use rely on a neutron star or black hole to focus neutrino beams to create a beacon.

To summarize briefly, the existence of megastructures depends entirely on where an extra-terrestrial civilization would fit into the Kardashev Scale (i.e. if they are a planetary, stellar, or galactic civilization). In this case, Jackson suggests that a Type II civilization would be capable of enclosing a neutron star or black hole through the creation of a large constellation of neutrino-transmitting satellites.

Dr. Jackson begins his study with a quote from Freeman Dyson’s 1966 essay, “The Search for Extraterrestrial Technology”, where he summarized his aims:

“So the first rule of my game is: think of the biggest possible artificial activities with limits set only by the laws of physics and look for those.

In a previous study, Dr. Jackson suggested how advanced ETIs could use small black holes as a gravitational lens to send gravitational wave signals across the galaxy. This concept builds upon recent work by other researchers who have suggested that gravitational waves (GWs) – which have become the focus of considerable research since they were first detected in 2016 – could be used to transmit information.

In another paper, he also ventured how a sufficiently-advanced civilization could use the same type of lens to create a laser beacon. In both cases, the technological requirements would be staggering and would require infrastructure on a stellar scale. Taking this a step further, Dr. Jackson explores the possibility of neutrinos being used to transmit information since they, like GWs, travel well through the interstellar medium.

Compared to focused beams of photons (aka. lasers), neutrinos have a number of advantages as far as beacons are concerned. As Dr. Jackson told Universe Today via email:

“Neutrinos arrive almost without attenuation from any source direction, this would have [a] big advantage in the Galactic plane. Photons in wavelengths like the infrared are also good with gas and dust (why the Webb is an IR scope) still there is some absorption. Neutrinos can travel across the universe almost without absorption.”

Artist’s representation of a constellation of accelerator-transmitters in orbit around a neutron star. Credit: A.A. Jackson/Triton Systems LLC

As for the process through which such a beacon could be created, Jackson once again refers to Freeman Dyson’s guiding rule on how ETIs could go about creating any type of megastructure. This rule is simply, “if the physics allows it, it is possibly technologically feasible.” In the case of a Type II civilization, the engineering requirements would be beyond our comprehension, but the principle remains sound.

Basically, the concept takes advantage of a phenomenon known as gravitational lensing, where scientists rely on the presence of a massive intervening object to focus and magnify light coming from a more distant object. In this case, the light source would be neutrinos, and the effect of focusing them would make for a stronger beacon signal. As Jackson explained:

“Place a source of neutrinos in orbit about a black hole or neutron star. The black hole or neutrons star are best because they are very compact objects. A black hole or neutron star is a gravitational lens, this lens focuses the neutrinos (it could be photons or gravitons) into an intense beam. This beam when seen at a distance is so ‘tight’ one has to place a constellation of neutrino ‘transmitters’ about the gravitational lens in order to get an approximate isotropic transmitter. In this case the number of ‘transmitters’ is about [1018], or about a billion times the number of stars in the Milky Way Galaxy.”

Much like building a Dyson Sphere, this sort of engineering undertaking would only be possible for a species that had effectively become a Type II civilization. In other words, a civilization capable of harnessing and channeling the energy radiated by its own star, which amounts to about ~4×1033 erg/sec (or 4×1026 watts) of energy – which is several trillion times what humanity currently consumes on an annual basis.

This image shows a visual representation of one of the highest-energy neutrino detections superimposed on a view of the IceCube Lab at the South Pole. Credit: IceCube Collaboration

Another interesting possibility arising from this is its implications for SETI. Given that a sufficiently-advanced extra-terrestrial species could be communicating via neutrinos, scientists could use existing detectors to pinpoint the sources. In this respect, focused neutrino beams could be added to the list of possible “technosignatures” – i.e. signs of technological activity – being sought out by SETI researchers.

“There are a number of ‘neutrino telescopes’ around the world,” Jackson stated. “If an advanced civilization beacon exists it could produce a very anomalous number of neutrino events, way above the natural sources of neutrinos such [as] the sun or supernova.. this would be an addition to the candidates for signs of advanced technological activity.”

To summarize things with another quote from one of Dyson’s famous essays:

“When we look into the universe for signs of artificial activities, it is technology and not intelligence that we must search for. It would be much more rewarding to search directly for intelligence, but technology is the only thing we have any chance of seeing.”

As we learn more about the Universe and become more advanced as a species, it opens our mind to new possibilities in the ongoing search for life. If and when we do find evidence of ETIs, it is entirely possible it will be because we’ve learned finally learned to read the signatures of their existence correctly. In the meantime, the search continues…

Further Reading: arXiv

Matt Williams @https://twitter.com/storybywill

Matt Williams is the Curator of Universe Today's Guide to Space. He is also a freelance writer, a science fiction author and a Taekwon-Do instructor. He lives with his family on Vancouver Island in beautiful British Columbia.

View Comments

  • I don't think we'll ever find some of these communication protocols being used. Why?
    Distance. Plain and simple. The nearest neutron star or black hole is probably several hundreds of light years away from any civilization. So to use those communication arrays, you have to waste those years transmitting data for hundreds of years conventionally. Then you get the high speed jump which is let's say ten times as fast. Then it'll have to travel again for hundreds of years back to civilization. As opposed to straight line communicating which is probably closer than the round trip to the array. Somehow, I don't think it is worth while doing that.

    • Agreed, also if you have read Liu Cixin's Dark Forest you may consider that keeping a low profile in a universe of unknown hostility is a good idea.

  • It would be unlikely that a universe of unknown hostility would last forever after many million years in any galaxy, one would come on top.

  • Here is a good lesson in survival. Aliens are either good (and won't kill us) or bad (and will kill us). If we keep a low profile, we might miss out on the nearest good alien race. But we will to our best experience, avoid those nasty races that will kill us. Just remember this: The first pilgrims to America nearly wiped out the Native Americans. It seems the Natives had no immunity to European deceases. What do you think will happen when aliens arrive on Earth?

Comments are closed.

Recent Posts

Satellites Equipped With a Tether Would be Able to De-Orbit Themselves at the end of Their Life

A new technology that allows satellites to de-orbit themselves at the end of their lives could help mitigate the problem…

2 days ago

Robotic asteroid mining spacecraft wins a grant from NASA

This year, the NASA's NIAC Program is looking at some really interesting ideas - such as a water-powered, laser-shooting, asteroid-mining…

3 days ago

Saltwater Similar to the Earth’s Oceans has been Seen on Europa. Another Good Reason Why We Really Need to Visit This Place

Jupiter's moon Europa is an intriguing world. It's the smoothest body in the Solar System, and the sixth-largest moon in…

3 days ago

This is What the Ground Looked Like After InSight Landed on Mars

When InSight landed on Mars on Nov. 26th, 2018, it deployed a parachute to slow its descent through the thin…

3 days ago

In Order to Reveal Planets Around Another star, a Starshade Needs to Fly 40,000 km Away from a Telescope, Aligned Within Only 1 Meter

If NASA sends a Starshade into space, it will need to perform some very accurate formation flying with the space…

4 days ago

An Orbit Map of the Solar System

If you want to know what a talent for scientific visualizations looks like, check out Eleanor Lutz. She's a PhD…

4 days ago