Astronomy

Phenomenal New View of Ceres ‘Lonely Mountain’ Reveals Signs of Volcanic Activity

Whoa – what a sight! Ceres’ lonely mountain, Ahuna Mons, is seen in this simulated perspective view. The elevation has been exaggerated by a factor of two. The view was made using enhanced-color images from NASA’s Dawn mission in August from an altitude of 240 miles (385 km) in August 2016. Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA/PSI

An isolated 3-mile-high (5 km) mountain Ahuna Mons on Ceres is likely volcanic in origin, and the dwarf planet may have a weak, temporary atmosphere. These are just two of many new insights about Ceres from NASA’s Dawn mission published this week in six papers in the journal Science.

Ahuna Mons is seen in this mosaic of images from NASA’s Dawn spacecraft. On its steepest side, this mountain is about 3 miles (5 km) high. Its average overall height is 2.5 miles (4 km). The diameter of the mountain is about 12 miles (20 km). Dawn took these images from its low-altitude mapping orbit, 240 miles (385 kilometers) above the surface, in December 2015.
Credits: NASA/JPL/Dawn mission

“Dawn has revealed that Ceres is a diverse world that clearly had geological activity in its recent past,” said Chris Russell, principal investigator of the Dawn mission, based at the University of California, Los Angeles.

The Ahuna Mons dome compared to a dome in Russia. The similarity in appearance is striking though the difference in size is large. Credit: NASA

Ahuna Mons is a volcanic dome similar to earthly and lunar volcanic domes but unique in the solar system, according to a new analysis led by Ottaviano Ruesch of NASA’s Goddard Space Flight Center and the Universities Space Research Association. While those on Earth erupt with molten rock, Ceres’ grandest peak likely formed as a salty-mud volcano. Instead of molten rock, salty-mud volcanoes, or “cryovolcanoes,” release frigid, salty water sometimes mixed with mud.


Learn more about Ahuna Mons

“This is the only known example of a cryovolcano that potentially formed from a salty mud mix, and that formed in the geologically recent past,” Ruesch said. Estimates place the mountain formation within the past billion years.

Dawn may also have detected a weak, temporary atmosphere; the probe’s gamma ray and neutron (GRaND) detector observed evidence that Ceres had accelerated electrons from the solar wind to very high energies over a period of about six days. In theory, the interaction between the solar wind’s energetic particles and atmospheric molecules could explain the GRaND observations.

Dwarf planet Ceres is located in the asteroid belt, between the orbits of Mars and Jupiter. Observations by ESA’s Herschel Space Observatory between 2011 and 2013 found that the dwarf planet has a thin water-vapor atmosphere, the first detection ever of water vapor around an asteroid in the asteroid belt. Copyright ESA/ATG medialab/Küppers et al.

A temporary atmosphere would confirm the water vapor the Herschel Space Observatory detected at Ceres in 2012-2013. The electrons that GRaND detected could have been produced by the solar wind hitting the water molecules that Herschel observed, but scientists are also looking into alternative explanations.

While Ahuna Mons may have erupted liquid water in the not-too-distant past, Dawn found probable water ice right now in the mid-latitude Oxo Crater using its visible and infrared mapping spectrometer (VIR).

The small, bright crater Oxo (6 miles / 10 km wide) on Ceres is seen in this perspective view. The elevation has been exaggerated by a factor of two. The view was made using enhanced-color images from NASA’s Dawn mission. Dawn’s visible and infrared mapping spectrometer (VIR) has found evidence of water ice at this crater. Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

Exposed water-ice is rare on the dwarf planet, but the low density of Ceres — 2.08 grams/cm3 vs. 5.5 for Earth — the impact-generated ice detection and the the existence of Ahuna Mons suggest that Ceres’ crust does contain a significant amount of water ice.

Impact craters are clearly the most abundant geological feature on Ceres, and their different shapes help tell the complex story of Ceres’ past. Craters that are roughly polygonal — shapes bounded by straight lines — hint that Ceres’ crust is heavily fractured. In addition, several Cerean craters display fractures on their floors. There are craters with flow-like features. Bright areas are peppered across Ceres, with the most reflective ones in Occator Crater. Some crater shapes could indicate water-ice in the subsurface.

In this illustration, a mud slurry rises up through Ceres’ crust to build a dome like Ahuna Mons. Click to see the animation. Credit: Goddard Media Studios

All these crater forms imply an outer shell for Ceres that is not purely ice or rock, but rather a mixture of both. Scientists also calculated the ratio of various craters’ depths to diameters, and found that some amount of crater relaxation must have occurred as icy walls gradually slump.

“The uneven distribution of craters indicates that the crust is not uniform, and that Ceres has gone through a complex geological evolution,” Hiesinger said.

The rim of Hamori Crater on Ceres is seen in the upper left portion of this image, which was taken by NASA’s Dawn spacecraft. Clay is found at many locations on the dwarf planet. Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

Ceres’ crust also appears loaded with clay-forming minerals called phyllosilicates. These phyllosilicates are rich in magnesium and also have some ammonium embedded in their crystalline structure. Their distribution throughout the dwarf planet’s crust indicates Ceres’ surface material has been altered by a global process involving water.

Now in its extended mission, the Dawn spacecraft has been increasing its altitude since Sept. 2 as scientists stand back once again for a broader look at Ceres under different lighting conditions now compared to earlier in the mission.

Bob King

I'm a long-time amateur astronomer and member of the American Association of Variable Star Observers (AAVSO). My observing passions include everything from auroras to Z Cam stars. I also write a daily astronomy blog called Astro Bob. My new book, "Wonders of the Night Sky You Must See Before You Die", a bucket list of essential sky sights, will publish in April. It's currently available for pre-order at Amazon and BN.

Recent Posts

Astronomers Find a Huge Planet Orbiting its Star at 6,000 Times the Earth-Sun Distance

Tracking exoplanets is hard - especially when that exoplanet is so far away from its…

20 hours ago

Scientists Figure out how the Asteroid Belt Attacked the Dinosaurs

How do you track an asteroid that hit the Earth over 60 million years ago? …

21 hours ago

NASA is Going Ahead With a Hopping Lander to Explore the Lunar Surface

Methods of movement for robotic explorers of other worlds have been as varied as the…

2 days ago

Two Bizarre red Asteroids Somehow Migrated From the Kuiper Belt all the way to the Main Asteroid Belt

If asked to pick what color asteroids in the asteroid belt would be, red is…

2 days ago

NASA Chooses Falcon Heavy Over SLS to Launch Europa Clipper, Saving About $2 Billion

The bureaucracy of government control is slowly fading away in space exploration, at least in…

3 days ago

A Black Hole Emitted a Flare Away From us, but its Intense Gravity Redirected the Blast Back in our Direction

Using the XMM-Newton and NuSTAR X-ray telescopes, an international team of scientists were able to…

4 days ago