Space Weather Causing Martian Atmospherics

Article written: 25 May , 2016
Updated: 13 Jun , 2016
by
A curious plume-like feature was observed on Mars on 17 May 1997 by the Hubble Space Telescope. It is similar to the features detected by amateur astronomers in 2012, although appeared in a different location. Credit: JPL/NASA/STScI

A curious plume-like feature was observed on Mars on May 17, 1997 by the Hubble Space Telescope. It is similar to the features detected by amateur astronomers in 2012, although appeared in a different location. Credit: JPL/NASA/STScI

Strange plumes in Mars’ atmosphere first recorded by amateur astronomers four year ago have planetary scientists still scratching their heads. But new data from European Space Agency’s orbiting Mars Express points to coronal mass ejections from the Sun as the culprit.

Mystery plume in Mars’ southern hemisphere photographed by amateur astronomer Wayne Jaeschke on March 20, 2012. The feature extended between 310-620 miles and lasted for about 10 days.

Mystery plume in Mars’ southern hemisphere photographed and animated by amateur astronomer Wayne Jaeschke on March 20, 2012. The feature lasted for about 10 days. Credit: Wayne Jaeschke

On two occasions in 2012 amateurs photographed cloud-like features rising to altitudes of over 155 miles (250 km) above the same region of Mars. By comparison, similar features seen in the past haven’t exceeded 62 miles (100 km). On March 20th of that year, the cloud developed in less than 10 hours, covered an area of up to 620 x 310 miles (1000 x 500 kilometers), and remained visible for around 10 days.

Back then astronomers hypothesized that ice crystals or even dust whirled high into the Martian atmosphere by seasonal winds might be the cause. However, the extreme altitude is far higher than where typical clouds of frozen carbon dioxide and water are thought to be able to form.

Indeed at those altitudes, we’ve entered Mars’ ionosphere, a rarified region where what air there is has been ionized by solar radiation. At Earth, charged particles from the Sun follow the planet’s global magnetic lines of force into the upper atmosphere to spark the aurora borealis. Might the strange features observed be Martian auroras linked to regions on the surface with stronger-than-usual magnetic fields?

Mars has magnetized rocks in its crust that create localized, patchy magnetic fields (left). In the illustration at right, we see how those fields extend into space above the rocks. At their tops, auroras can form. Credit: NASA

Mars has magnetized rocks in its crust that create localized, patchy magnetic fields (left). In the illustration at right, we see how those fields extend into space above the rocks. At their tops, auroras can form. Credit: NASA

Once upon a very long time ago, Mars may have had a global magnetic field generated by electrical currents in a liquid iron-nickel core much like the Earth’s does today. In the current era, the Red Planet has only residual fields centered over regions of magnetic rocks in its crust.

Copyright: W. Jaeschke and D. Parker The top image shows the location of the mysterious plume on Mars, identified within the yellow circle (top image, south is up), along with different views of the changing plume morphology taken by W. Jaeschke and D. Parker on 21 March 21 2012.

The top image shows the location of the mysterious plume on Mars, identified within the yellow circle (top image, south is up), along with different views of the changing plume morphology on March 21, 2012. Copyright: W. Jaeschke and D. Parker

Instead of a single, planet-wide field that funnels particles from the Sun into the atmosphere to generate auroras, Mars is peppered with pockets of magnetism, each potentially capable of connecting with the wind of particles from the Sun to spark a modest display of the “northern lights.” Auroras were first discovered on Mars in 2004 by the Mars Express orbiter, but they’re faint compared to the plumes, which were too bright to be considered auroras.

Still, this was a step in the right direction. What was needed was some hard data of a possible Sun-Earth interaction which scientists ultimately found when they looked into plasma and solar wind measurements collected by Mars Express at the time. David Andrews of the Swedish Institute of Space Physics, lead author of a recent paper reporting the Mars Express results, found evidence for a large coronal mass ejection or CME from the Sun striking the martian atmosphere in the right place and at around the right time.

Examples of Earth-based observations of the mysterious plume seen on 21 March 2012 (top right) and of Mars Express solar wind observations during March and April 2012 (bottom right).

Earth-based observations of the plume on March 21, 2012 (top right) and of Mars Express solar wind observations during March and April 2012 (bottom right). The left-hand graphics show Mars as seen by Mars Express. Green represents the planet’s dayside and gray, the nightside. Magnetic areas of the crust are shown in blue and red. The white box indicates the area in which the plume observations were made. Together, these graphics show that the amateur observations were made during the martian daytime, along the dawn terminator, while the spacecraft observations were made along the dusk terminator, approximately half a martian ‘day’ later.The black line on Mars is the ground track of the Mars Express orbiter. The plot on the lower right shows Mars Express’s solar wind measurements. The peaks marked by the horizontal blue line indicate the increase in the solar wind properties as a result of the impact of the coronal mass ejection. Credit: Copyright: visual images: D. Parker (large Mars image and bottom inset) & W. Jaeschke (top inset). All other graphics courtesy D. Andrews

CMEs are enormous explosions of hot solar plasma — a soup of electrons and protons — entwined with magnetic fields that blast off the Sun and can touch off geomagnetic storms and auroras when they encounter the Earth and other planets.

“Our plasma observations tell us that there was a space weather event large enough to impact Mars and increase the escape of plasma from the planet’s atmosphere,” said Andrews. Indeed, the plume was seen along the day–night boundary, over a region of known strong crustal magnetic fields.

Locations of 19 auroral detections (white circles) made by the SPICAM instrument on Mars Express during 113 nightside orbits between 2004 and 2014, over locations already known to be associated with residual crustal magnetism. The data is superimposed on the magnetic field line structure (from NASA’s Mars Global Surveyor) where red indicates closed magnetic field lines, grading through yellow, green and blue to open field lines in purple. The auroral emissions are very short-lived, they are not seen to repeat in the same locations, and only occur near the boundary between open and closed magnetic field lines. Credit: ESA / Copyright Based on data from J-C. Gérard et al (2015)

Locations of 19 auroral detections (white circles) made by Mars Express during 113 nightside orbits between 2004 and 2014, over locations already known to be associated with residual crustal magnetism. The data is superimposed on the magnetic field line structure (from NASA’s Mars Global Surveyor) where red indicates closed magnetic field lines, grading through yellow, green and blue to open field lines in purple. The auroral emissions are very short-lived, they are not seen to repeat in the same locations. Credit: ESA / Copyright Based on data from J-C. Gérard et al (2015)

But again, a Mars aurora wouldn’t be expected to shine so brightly. That’s why Andrews thinks that the CME prompted a disturbance in the ionosphere large enough to affect dust and ice grains below:

“One idea is that a fast-traveling CME causes a significant perturbation in the ionosphere resulting in dust and ice grains residing at high altitudes in the upper atmosphere being pushed around by the ionospheric plasma and magnetic fields, and then lofted to even higher altitudes by electrical charging,” according to Andrews.

A colossal CME departs the Sun in February 2000. erupting filament lifted off the active solar surface and blasted this enormous bubble of magnetic plasma into space. Credit NASA/ESA/SOHO

A colossal CME, composed of a magnetized cloud of subatomic particles, departs the Sun in February 2000. Credit NASA/ESA/SOHO

With enough dust and ice twinkling high above the planet’s surface, it might be possible for observers on Earth to see the result as a wispy plume of light. Plumes appear to be rare on Mars as a search through the archives has revealed. The only other, seen by the Hubble Space Telescope in May 1997, occurred when a CME was hitting the Earth at the same time. Unfortunately, there’s no information from Mars orbiters at the time about its effect on that planet.

Observers on Earth and orbiters zipping around the Red Planet continue to monitor Mars for recurrences. Scientists also plan to use the webcam on Mars Express for more frequent coverage. Like a dog with a bone, once scientists get a bite on a tasty mystery, they won’t be letting go anytime soon.

, , , , , , ,



1 Response

  1. crocodilebomb says

    Thank you! In the Jaeschke animation, at nine o’clock there is an arc along the limb. Is that an atmospheric layer boundary or an optical artifact? I was just reading that some martian dust is finer than cigarette smoke. It’s interesting to see this effect mimicking the structure of solar flares. They are “marsspots”. Too bad they weren’t able to put them in the movie. (Not that it would stop George Lucas…)

Comments are closed.