Earth

Sun-Like Star Shows Magnetic Field Was Key For Early Life On Earth

The early Solar System was a much different place than it is now. Chaos reigned supreme before things settled down into their present state. New research shows that the young Sun was more chaotic and expressive than it is now, and that Earth’s magnetic field was key for the development of life on Earth.

Researchers at the Harvard Smithsonian Centre for Astrophysics have been studying a star called Kappa Ceti, about 30 light years away in the Cetus constellation. Kappa Ceti is in many ways similar to our own Sun, but it’s estimated to be between 400 million to 600 million years old, about the same age as our Sun when life appeared on Earth. Studying Kappa Ceti gives scientists a good idea of the type of star that early life on Earth had to contend with.

Kappa Ceti, at its young age, is much more magnetically active than our 4.6 billion year old Sun, according to this new research. It emits a relentless solar wind, which the research team at Harvard says is 50 times as powerful as the solar wind from our Sun. It’s surface is also much more active and chaotic. Rather than the sunspots that we can see on our Sun, Kappa Ceti displays numerous starspots, the larger brother of the sunspot. And the starspots on Kappa Ceti are much more numerous than the sunspots observed on the Sun.

We’re familiar with the solar flares that come from the Sun periodically, but in the early life of the Sun, the flares were much more energetic too. Researchers have found evidence on Kappa Ceti of what are called super-flares. These monsters are similar to the flares we see today, but can release 10 to 100 million times more energy than the flares we can observe on our Sun today.

So if early life on Earth had to contend with such a noisy neighbour for a Sun, how did it cope? What prevented all that solar output from stripping away Earth’s atmosphere, and killing anything alive? Then, as now, the Earth’s electromagnetic field protected it. But in the same way that the Sun was so different long ago, so was the Earth’s protective shield. It may have been weaker than it is now.

The researchers found that if the Earth’s magnetic field was indeed weaker, then the magnetosphere may have been only 34% to 48% as large as it is now. The conclusion of the study says “… the early magnetic interaction between the stellar wind and the young Earth planetary magnetic field may well have prevented the volatile losses from the Earth exosphere and created conditions to support life.”

Or, in plain language: “The early Earth didn’t have as much protection as it does now, but it had enough,” says Do Nascimento.

Evidently.

Evan Gough

Recent Posts

TESS Finds its First Rogue Planet

Well over 5,000 planets have been found orbiting other star systems. One of the satellites…

16 hours ago

There are Four Ways to Build with Regolith on the Moon

Over the last few years I have been renovating my home. Building on Earth seems…

1 day ago

Purple Bacteria — Not Green Plants — Might Be the Strongest Indication of Life

Astrobiologists continue to work towards determining which biosignatures might be best to look for when…

2 days ago

See the Southern Ring Nebula in 3D

Planetary nebula are some of nature's most stunning visual displays. The name is confusing since…

2 days ago

Hubble Has Accidentally Discovered Over a Thousand Asteroids

The venerable Hubble Space Telescope is like a gift that keeps on giving. Not only…

2 days ago

NASA Restores Communications with Voyager 1

The venerable Voyager 1 spacecraft is finally phoning home again. This is much to the…

3 days ago