DSCOVR Captures EPIC Views of the March 2016 Eclipse

On March 8, 2016 (March 9 local time) the Moon briefly blocked the light from the Sun in what was the only total solar eclipse of the year. The event was visible across portions of southeast Asia, Indonesia, and Micronesia, and was observed by both skywatchers on the ground in person and those watching live online around the world. While to most the view was of a silhouetted Moon slowly carving away the disk of the Sun before totality revealed a shimmering corona, the view from space looking back at Earth showed the Moon’s dark shadow passing over islands, clouds, and sea.

The picture above was acquired by NASA’s EPIC (Earth Polychromatic Imaging Camera) instrument on board the DSCOVR spacecraft, operated by NOAA. It’s one of twelve images captured during the course of the eclipse from DSCOVR’s position at L1, 1.6 million km (nearly 1 million miles) away.

Read more: What Are Lagrange Points?

Launched Feb. 11, 2015, DSCOVR observes both Earth and incoming space weather from the Sun, providing up to an hour of early warning of solar storm activity. Its location gives it a view of a constantly-illuminated Earth, since DSCOVR is always positioned between it and the Sun.*

The Moon’s shadow during a total eclipse looks like a black hole on the Earth (no actual singularities were involved.) DSCOVR/EPIC image.

Watch an animation of the Moon’s shadow traveling northeast across the Pacific here, and for more images of the March 2016 total eclipse (captured from the ground) check out this article by David Dickinson.

The next solar eclipse in 2016 will be on September 1, and will be a partial/annular eclipse visible from Africa and the Indian Ocean. The next total solar eclipse will occur on Aug. 21, 2017, during which the path of totality will cross the United States from coast to coast.

Source: NASA’s Earth Observatory

Note: The March 2016 eclipse was also captured by Japan’s Himawari-8 geostationary weather satellite; watch the sequence from that spacecraft below:

*DSCOVR is actually in a “halo orbit” around L1, which affects its viewing angle of Earth—this is why we see the Moon’s shadow and not the Moon itself (and when it does see the Moon in front of Earth there isn’t a shadow or eclipse.) Read more on Phil Plait’s Slate article here.

Jason Major

A graphic designer in Rhode Island, Jason writes about space exploration on his blog Lights In The Dark, Discovery News, and, of course, here on Universe Today. Ad astra!

Recent Posts

Do the Fastest Spinning Pulsars Contain Quark Matter?

When a massive star dies as a supernova, it can leave behind a pulsar, a…

2 hours ago

Another Clue About the Ultra-High Energy Cosmic Rays: Magnetic Turbulence

Space largely seems quite empty! Yet even in the dark voids of the cosmos, ultra-high-energy…

17 hours ago

NASA Thinks it Knows Why Ingenuity Crashed on Mars

NASA’s Ingenuity helicopter sent its final signals to Earth in the earlier part of the…

18 hours ago

New Research may Explain how Supermassive Black Holes in the Early Universe Grew so Fast

Not long ago, the James Webb Space Telescope (JWST) peered into Cosmic Dawn, the cosmological…

22 hours ago

Early Earth's Oceans of Magma Accelerated the Moon's Departure

When the Earth was struck by a Mars-sized planet in its early history, it ejected…

1 day ago

Could the ESA’s PLATO Mission Find Earth 2.0?

Currently, 5,788 exoplanets have been confirmed in 4,326 star systems, while thousands more candidates await…

2 days ago