Astro-Challenge: Splitting 44 Boötis

How good are your optics? Nothing can challenge the resolution of a large light bucket telescope, like attempting to split close double stars. This week, we’d like to highlight a curious triple star system that presents a supreme challenge over the next few years and will ‘keep on giving’ for decades to come.

The location of 44 Boötis in the constellation of the Herdsman. Image credit: Stellarium click image to enlarge

The star system in question is 44 Boötis, in the umlaut-adorned constellation of Boötes the herdsman. Boötes is still riding high to the west at dusk for northern hemisphere observers in late August, providing observers a chance to split the pair during prime-time viewing hours.

A close up of the five degree wide field of view for 44 Boötis. Note: magnitudes for nearby stars are noted minus decimal points.  Image credit: Starry Night Education software.

Sometimes also referred to as Iota Boötis, William Herschel first measured the angular separation of the pair in 1781, and F.G.W. Struve discovered the binary nature of 44 Boötis in 1832. Back then, the pair was headed towards a maximum apparent separation of 5 arc seconds in 1870. We call this point apastron. A fast forward to 2015 sees the situation reversed, as the pair currently sits about an arc second apart, and closing. 44 Boötis will pass a periastron of just 0.23” from the primary in 2020. Can you split the pair now? How ‘bout in 2016 onward? Can you recover the split, post 2020?

The apparent orbit of 44 Boötis over the next two centuries. Image credit: Dave Dickinson

The physical parameters of the system are amazing. About 42 light years distant, 44 Boötis A is 1.05 times as massive as our Sun, and shines at magnitude +4.8. The B component is in a 210 year elliptical orbit with a semi-major axis of 49 AUs (for comparison, Pluto at aphelion is 49 AUs from the Sun), and is itself a curious contact spectroscopic binary about one magnitude fainter. Though you won’t be able to split the B-C pair with a backyard telescope, they betray their presence to professional instruments due to their intertwined spectra. 44 Boötis B and C have a combined mass of 1.5 times that of our Sun, and orbit each other once every 6.4 hours at a center-to-center distance of only 750,000 miles, or only 3 times the distance from Earth to the Moon:

The strange system of 44 Bootis B-C. Note the diameters of the Earth and Moon aren’t to scale. Image credit: Dave Dickinson

That’s close enough that the pair shares a merging atmosphere. It’s a mystery as to just how these types of contact binary stars form, and it would be fascinating to see 44 Boötis up close. This fast spin along our line of sight also means that 44 Boötis B-C varies in brightness by about half a magnitude over a six hour span.

An artist’s conception of the B-C pair of the 44 Boötis system, using data from the Chandra X-ray observatory. Image credit: NASA/CXC/M.Weiss

Though the visual 44 Boötis A-B pair doesn’t quite have an orbital period that the average humanoid could expect to live through, beginning amateur astronomers can watch as the pair once again heads towards a wide an easy 5” split during apastron around 2080.

Collimation, or the near-perfect alignment of optics, is key to the splitting close binaries, and also serves as a good test of a telescope and the stability of the atmosphere. A well-collimated scope will display stars with sharp round Airy disks, looking like luminescent circular ripples in a pond. We call the lower boundary to splitting double stars the Dawes Limit, and on most nights, atmospheric seeing will limit this to about an arc second.

But there’s another method that you can use to ‘split’ doubles closer than an arc second, known as interferometry. This relies on observing the star by use of a filtering mask with two slits that vary in distance across the aperture of the scope. When the mask is rotated to the appropriate position angle and the slits are adjusted properly, the ‘fringes’ of the star snap into focus. A formula utilizing the slit separation can then calculate the separation of the close binary pair. This method works with stars that are A). Closer than 1” separation, and B). Vary by not more than a magnitude in brightness difference.

A homemade cardboard interferometer. Image credit: Dave Dickinson

44 Boötis near periastron definitely qualifies. As of this writing, our ‘cardboard interferometer’ is still very much a work in progress. We could envision a more complex version of this rig mechanized, complete with video analysis. Hey, if nothing else, it really draws stares from fellow amateur astronomers…

We promise to delve into the exciting realm of backyard cardboard interferometry once we’ve worked all of the bugs out. In the meantime, be sure to regale us with your tales of tragedy and triumph observing 44 Boötis. Revisiting double stars can pose a life-long pursuit!

– Be sure to check out another double star challenge from Universe Today, with the hunt for Sirius B.

David Dickinson

David Dickinson is an Earth science teacher, freelance science writer, retired USAF veteran & backyard astronomer. He currently writes and ponders the universe as he travels the world with his wife.

Recent Posts

TESS Finds its First Rogue Planet

Well over 5,000 planets have been found orbiting other star systems. One of the satellites…

13 hours ago

There are Four Ways to Build with Regolith on the Moon

Over the last few years I have been renovating my home. Building on Earth seems…

24 hours ago

Purple Bacteria — Not Green Plants — Might Be the Strongest Indication of Life

Astrobiologists continue to work towards determining which biosignatures might be best to look for when…

2 days ago

See the Southern Ring Nebula in 3D

Planetary nebula are some of nature's most stunning visual displays. The name is confusing since…

2 days ago

Hubble Has Accidentally Discovered Over a Thousand Asteroids

The venerable Hubble Space Telescope is like a gift that keeps on giving. Not only…

2 days ago

NASA Restores Communications with Voyager 1

The venerable Voyager 1 spacecraft is finally phoning home again. This is much to the…

2 days ago