Check Out This Huge Rock On The Surface Of Rosetta’s Comet!

As the Rosetta spacecraft drops a bit closer to its target comet, some really cool features are popping into view. For example, look at this picture of a 150-foot (45-meter) rock on Comet 67P/Churyumov-Gerasimenko, which was taken in September and released today (Oct. 9). And it’s led to the decision to have an Egyptian theme to naming features on the comet.

“It stands out among a group of boulders in the smooth region located on the lower side of 67P/C-G’s larger lobe,” ESA stated in a release. “This cluster of boulders reminded scientists of the famous pyramids at Giza near Cairo in Egypt, and thus it has been named Cheops for the largest of those pyramids, the Great Pyramid, which was built as a tomb for the pharaoh Cheops (also known as Kheops or Khufu) around 2550 BC.”

Scientists are still trying to figure out what the boulders are made of, and how they are formed, as the spacecraft moves into a “close observation phase” tomorrow (Oct. 10) where it is only 10 kilometers (6.2 miles) from the surface.

A wider field of view of 67P/Churyumov-Gerasimenko on the larger lobe, where the boulder Cheops is located. This picture was taken by the Rosetta spacecraft shortly after its arrival in August. Credit: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA

Meanwhile, some new results are coming from an asteroid that the spacecraft whizzed by a couple of years ago. In the picture below, you can see evidence of a crater that Rosetta didn’t even see!

The grooves you see there on Lutetia (which Rosetta imaged in 2010) hint at shock waves from various craters, including one that was likely on the hidden side of the asteroid relative to Rosetta as it flew by. The suspected crater is called “Suspicio.” While craters have been found in other asteroids visited by spacecraft, grooves are rarer.

“The way in which grooves are formed on these bodies is still widely debated, but it likely involves impacts,” ESA stated. “Shock waves from the impact travel through the interior of a small, porous body and fracture the surface to form the grooves.”

A paper on the research will be published in Planetary and Space Science this month, led by Sebastien Besse, a research fellow at ESA’s Technical Centre. For more information, check out this release from ESA.

A part of asteroid Lutetia imaged by the Rosetta spacecraft in 2010. The grooves you see are colored according to the crater scientists believe it’s associated with. The blue lines are from a suspected, unseen crater called “Suspicio”. Red is associated with the known crater Massilia and purple for the North Pole Crater Cluster. Yellow is unassociated with craters considered in this study. Credit: Data: Besse et al (2014); image: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA
Elizabeth Howell

Elizabeth Howell is the senior writer at Universe Today. She also works for Space.com, Space Exploration Network, the NASA Lunar Science Institute, NASA Astrobiology Magazine and LiveScience, among others. Career highlights include watching three shuttle launches, and going on a two-week simulated Mars expedition in rural Utah. You can follow her on Twitter @howellspace or contact her at her website.

Recent Posts

Neutron Stars are Jetting Material Away at 40% the Speed of Light

It’s a well known fact that black holes absorb anything that falls into them. Often…

3 hours ago

Lunar Night Permanently Ends the Odysseus Mission

On February 15th, Intuitive Machines (IM) launched its first Nova-C class spacecraft from Kennedy Space…

12 hours ago

Webb Joins the Hunt for Protoplanets

We can't understand what we can't clearly see. That fact plagues scientists who study how…

15 hours ago

This Supernova Lit Up the Sky in 1181. Here’s What it Looks Like Now

Historical astronomical records from China and Japan recorded a supernova explosion in the year 1181.…

17 hours ago

Hubble Sees a Star About to Ignite

This is an image of the FS Tau multi-star system taken by the Hubble Space…

18 hours ago

This Black Hole is a Total Underachiever

Anyone can be an underachiever, even if you're an astronomical singularity weighing over four billion…

18 hours ago