Split-Personality Pulsar Switches From Radio To Gamma-Rays

Another snapshot of our strange universe: astronomers recently caught a pulsar — a particular kind of dense star — switch off its radio beacon while powerful gamma rays brightened fivefold.

“It’s almost as if someone flipped a switch, morphing the system from a lower-energy state to a higher-energy one,” stated lead researcher Benjamin Stappers, an astrophysicist at the University of Manchester, England.

“The change appears to reflect an erratic interaction between the pulsar and its companion, one that allows us an opportunity to explore a rare transitional phase in the life of this binary.”

The binary system includes pulsar J1023+0038 and another star that has a fifth of the mass of the sun. They’re close orbiting, spinning around each other every 4.8 hours. This means the companion’s days are numbered, because the pulsar is pulling it apart.

In NASA’s words, here is what is going on:

In J1023, the stars are close enough that a stream of gas flows from the sun-like star toward the pulsar. The pulsar’s rapid rotation and intense magnetic field are responsible for both the radio beam and its powerful pulsar wind. When the radio beam is detectable, the pulsar wind holds back the companion’s gas stream, preventing it from approaching too closely. But now and then the stream surges, pushing its way closer to the pulsar and establishing an accretion disk.

Gas in the disk becomes compressed and heated, reaching temperatures hot enough to emit X-rays. Next, material along the inner edge of the disk quickly loses orbital energy and descends toward the pulsar. When it falls to an altitude of about 50 miles (80 km), processes involved in creating the radio beam are either shut down or, more likely, obscured.

The inner edge of the disk probably fluctuates considerably at this altitude. Some of it may become accelerated outward at nearly the speed of light, forming dual particle jets firing in opposite directions — a phenomenon more typically associated with accreting black holes. Shock waves within and along the periphery of these jets are a likely source of the bright gamma-ray emission detected by Fermi.

You can read more about the research in the Astrophysical Journal or in preprint version on Arxiv.

Source: NASA

Elizabeth Howell

Elizabeth Howell is the senior writer at Universe Today. She also works for Space.com, Space Exploration Network, the NASA Lunar Science Institute, NASA Astrobiology Magazine and LiveScience, among others. Career highlights include watching three shuttle launches, and going on a two-week simulated Mars expedition in rural Utah. You can follow her on Twitter @howellspace or contact her at her website.

Recent Posts

Could Comets have Delivered the Building Blocks of Life to “Ocean Worlds” like Europa, Enceladus, and Titan too?

Throughout Earth's history, the planet's surface has been regularly impacted by comets, meteors, and the…

24 mins ago

There’s More Water Inside Planets Than We Thought

When you walk across your lawn or down the street, you move on the surface…

2 hours ago

Why Did Copernicus Reject Geocentrism?

Popular science history paints a picture of the Greek geocentric model dominating astronomical thought beginning…

4 hours ago

China Will Launch its Mars Sample Return Mission in 2028

While NASA's Mars Sample Return mission has experienced a setback, China is still moving forward…

10 hours ago

Artemis III Landing Sites Identified Using Mapping and Algorithm Techniques

Where would be the most ideal landing site for the Artemis III crew in SpaceX’s…

18 hours ago

One Step Closer to Solving the Mystery of Mars’ Lost Water

Few scientists doubt that Mars was once warm and wet. The evidence for a warm,…

1 day ago