These Ultra-Black ‘Cosmic Clumps’ Will Give Birth To Powerful Stars

When gas and dust squeeze tightly enough together in space, no light can get through and the place is black as pitch. But this dusty cloud seen about 16,000 light-years away from us will eventually generate new stars, with the darkest parts creating powerful O-type stars — a star-type poorly known to scientists.

“The map of the structure of the cloud and its dense cores we have made in this study reveals a lot of fine details about the massive star and star cluster formation process,” stated Michael Butler, a postdoctoral researcher at the University of Zurich in Switzerland who led the study.

The new study, which included observations from NASA’s Spitzer Space Telescope, examined the shadows these clumps cast and concluded this cloud is about 7,000 times more massive than the sun, and about 50 light-years in diameter. Because Spitzer examines the universe in infrared light, this allows it to peer through dusty areas that are difficult or impossible to see in visual light, allowing Spitzer to examine different astronomical phenomena.

Artist’s concept of NASA’s Spitzer Space Telescope surrounded by examples of exoplanets it has looked at. Credit: NASA/JPL-Caltech

Looking at clouds such as this one are expected to shed more light (so to speak) on how O-type stars are created. This stellar type is at least 16 times as massive as the sun (but can be much more) and is known for its wind and powerful radiation, that clean out the neighborhood of any dust or gas that could have formed other planets or stars.

Once these stars reach the end of their short lives, they explode as supernovas and also create heavier elements that are found in rocky planets and in the case of Earth (as far as we know), living beings. Researchers are still unclear on how the stars are able to pick up mass that is so much more the mass of our sun without breaking apart.

A mission extension for Spitzer was not approved after a NASA Senior Review made public last week, but officials were told to submit a revised budget for consideration in 2016.

You can read more about the study, which was published earlier this year, in Astrophysical Journal Letters.

Source: Jet Propulsion Laboratory

Elizabeth Howell

Elizabeth Howell is the senior writer at Universe Today. She also works for Space.com, Space Exploration Network, the NASA Lunar Science Institute, NASA Astrobiology Magazine and LiveScience, among others. Career highlights include watching three shuttle launches, and going on a two-week simulated Mars expedition in rural Utah. You can follow her on Twitter @howellspace or contact her at her website.

Recent Posts

What’s the Most Effective Way to Explore our Nearest Stars?

It was 1903 that the Wright brothers made the first successful self-propelled flight. Launching themselves…

2 hours ago

Radiating Exoplanet Discovered in “Perfect Tidal Storm”

Can tidal forces cause an exoplanet’s surface to radiate heat? This is what a recent…

8 hours ago

The Giant Planets Migrated Between 60-100 Million Years After the Solar System Formed

Untangling what happened in our Solar System tens or hundreds of millions of years ago…

21 hours ago

Artemis Astronauts Will Deploy New Seismometers on the Moon

Back in the 1960s and 1970s, Apollo astronauts set up a collection of lunar seismometers…

2 days ago

Ice Deposits on Ceres Might Only Be a Few Thousand Years Old

The dwarf planet Ceres has some permanently dark craters that hold ice. Astronomers thought the…

2 days ago

The Mystery of Cosmic Rays Deepens

Cosmic rays are high-energy particles accelerated to extreme velocities approaching the speed of light. It…

2 days ago