Categories: Astronomygalaxies

“Fossil Galaxy” Discovered From the Early Universe

A small galaxy circling the Milky Way may be a fossil left over from the early Universe.

The stars in the galaxy, known as Segue 1, are virtually pure with fewer heavy elements than those of any other galaxy known. Such few stars (roughly 1,000 compared to the Milky Way’s 100 billion) with such small amounts of heavy elements imply the dwarf galaxy may have stopped evolving almost 13 billion years ago.

If true, Segue 1 could offer a window into the early universe, revealing new evolutionary pathways among galaxies in the early Universe.

Only hydrogen, helium, and a small trace of lithium emerged from the Big Bang nearly 13.8 billion years ago, leaving a young universe that was virtually pure.  Over time the cycle of star birth and death produced and dispersed more heavy elements (often referred to as “metals” in astronomical circles), planting the seeds necessary for rocky planets and intelligent life.

The older a star is, the less contaminated it was at birth, and the fewer metals lacing the star’s surface today. Thus the elements detectible in a star’s spectrum provide a key to understanding the generations of stars, which preceded the star’s birth.

The Sun, for example, is metal-rich, with roughly 1.4% of its mass composed of elements heavier than hydrogen and helium. It formed only 4.6 billion years ago — two thirds of the way from the Big Bang to now — and sprung from multiple generations of earlier stars.

But three stars visible in Segue 1 have an iron abundance that is roughly 3,000 times less than the Sun’s iron. Or to use the proper jargon, these three stars have metallicities below [Fe/H] = -3.5.

Researchers led by Anna Frebel of the Massachusetts Institute of Technology report that Segue 1 “may be a surviving first galaxy that experienced only one burst of star formation” in the Astrophysical Journal.

Not only do the low chemical abundances suggest this galaxy is composed of extremely old stars, but they provide tantalizing hints about the types of supernovae explosions that helped create these stars. When high-mass stars explode they disperse a mix of elements; But when low-mass stars explode they almost exclusively disperse iron.

The lack of iron suggests the stars in Segue 1 are the products of high mass stars, which explode much more quickly than low mass stars. It appears that Segue 1 underwent a rapid burst of star formation shortly after the formation of the galaxy in the early universe.

Additionally, six stars observed show some of the lowest levels of neutron-capture elements ever found, with roughly 16,000 fewer elements than those seen in the Sun. These elements are created within stars when an atomic nucleus grabs an extra neutron. So a low level indicates a lack of repeated star formation.

Segue 1 burned through its first generation of stars quickly. But after the young galaxy produced a second generation of stars it completely shut off star formation, remaining a relic of the early universe.

The findings here suggest there may be a greater diversity of evolutionary pathways among galaxies in the early universe than had previously been thought.

But before we can make any sweeping claims “we really need to find more of these systems,” said Frebel in a press release. Alternatively, “if we never find another one, it would tell us how rare it is that galaxies fail in their evolution. We just don’t know at this stage because this is the first of its kind.”

The paper will be published in the Astrophysical Journal and is available for download here.

Shannon Hall

Shannon Hall is a freelance science journalist. She holds two B.A.'s from Whitman College in physics-astronomy and philosophy, and an M.S. in astronomy from the University of Wyoming. Currently, she is working toward a second M.S. from NYU's Science, Health and Environmental Reporting program. You can follow her on Twitter @ShannonWHall.

Recent Posts

Artemis Astronauts Will Deploy New Seismometers on the Moon

Back in the 1960s and 1970s, Apollo astronauts set up a collection of lunar seismometers…

19 hours ago

Ice Deposits on Ceres Might Only Be a Few Thousand Years Old

The dwarf planet Ceres has some permanently dark craters that hold ice. Astronomers thought the…

20 hours ago

The Mystery of Cosmic Rays Deepens

Cosmic rays are high-energy particles accelerated to extreme velocities approaching the speed of light. It…

22 hours ago

NASA Confirms that a Piece of its Battery Pack Smashed into a Florida Home

NASA is in the business of launching things into orbit. But what goes up must…

22 hours ago

Are Titan's Dunes Made of Comet Dust?

A new theory suggests that Titan's majestic dune fields may have come from outer space.…

1 day ago

The Solar Wind is Stripping Oxygen and Carbon Away From Venus

The BepiColombo mission, a joint effort between JAXA and the ESA, was only the second…

2 days ago