Quasars Tell The Story Of How Fast The Young Universe Expanded

For those who saw the Cosmos episode on William Herschel describing telescopes as time machines, here is a clear example of that. By examining 140,000 objects called quasars (galaxies with an active black hole at their centers), astronomers have charted the expansion rate of the universe — not now, but 10.8 billion years ago.

This is the most precise measurement ever of the universe’s expansion rate at any point in time, the science teams said, with the calculation showing the universe was expanding by 1% every 44 million years at that time. (That figure is to 2% precision, the researchers added.)

“If we look back to the Universe when galaxies were three times closer together than they are today, we’d see that a pair of galaxies separated by a million light-years would be drifting apart at a speed of 68 kilometers per second as the Universe expands,” stated Andreu Font-Ribera of the Lawrence Berkeley National Laboratory, who led one of the two analyses.

The researchers used a telescope called the Sloan Digital Sky Survey, a 2.5-meter telescope at Apache Point Observatory in New Mexico. The discovery was made during Sloan’s Baryon Oscillation Spectroscopic Survey, or BOSS, whose aim has been to figure out the expansion and acceleration of the universe.

The accelerating, expanding Universe. Credit: NASA/WMAP

“BOSS determines the expansion rate at a given time in the Universe by measuring the size of baryon acoustic oscillations (BAO), a signature imprinted in the way matter is distributed, resulting from sound waves in the early Universe,” the Sloan Digital Sky Survey stated. “This imprint is visible in the distribution of galaxies, quasars, and intergalactic hydrogen throughout the cosmos.”

Font-Ribera and his collaborators examined how quasars are distributed compared to hydrogen gas to calculate distance. The other analysis, led by Timothée Delubac (Centre de Saclay, France), examined the hydrogen gas to see patterns and measure mass distribution.

You can read more about Font-Ribera’s team’s research in preprint version on Arxiv. Delubac’s research does not appear to be available online, but the title is “Baryon Acoustic Oscillations in the Ly-alpha forest of BOSS DR11 quasars” and it has been submitted to Astronomy & Astrophysics.

Source: Sloan Digital Sky Survey

Elizabeth Howell

Elizabeth Howell is the senior writer at Universe Today. She also works for Space.com, Space Exploration Network, the NASA Lunar Science Institute, NASA Astrobiology Magazine and LiveScience, among others. Career highlights include watching three shuttle launches, and going on a two-week simulated Mars expedition in rural Utah. You can follow her on Twitter @howellspace or contact her at her website.

Recent Posts

Artemis Astronauts Will Deploy New Seismometers on the Moon

Back in the 1960s and 1970s, Apollo astronauts set up a collection of lunar seismometers…

11 hours ago

Ice Deposits on Ceres Might Only Be a Few Thousand Years Old

The dwarf planet Ceres has some permanently dark craters that hold ice. Astronomers thought the…

12 hours ago

The Mystery of Cosmic Rays Deepens

Cosmic rays are high-energy particles accelerated to extreme velocities approaching the speed of light. It…

14 hours ago

NASA Confirms that a Piece of its Battery Pack Smashed into a Florida Home

NASA is in the business of launching things into orbit. But what goes up must…

14 hours ago

Are Titan's Dunes Made of Comet Dust?

A new theory suggests that Titan's majestic dune fields may have come from outer space.…

22 hours ago

The Solar Wind is Stripping Oxygen and Carbon Away From Venus

The BepiColombo mission, a joint effort between JAXA and the ESA, was only the second…

1 day ago