Slip-Sliding Away: Solar Flare’s Magnetic Lines Go For A Loop In This Video

When will the next big solar flare occur? How much damage could it cause to power lines and satellites? These are important questions for those looking to protect our infrastructure, but there’s still a lot we need to figure out concerning space weather.

The video above, however, shows magnetic lines weaving together from the surface of the Sun in 2012, eventually creating an eruption that was 35 times our planet’s size and sending out a surge of energy. It’s these energetic flares that can hit Earth’s atmosphere and cause auroras and power surges.

While models of this have been made before, this is the first time the phenomenon was caught in action. Scientists saw it using NASA’s Solar Dynamics Observatory.

Models of the flares show they typically occur amid distorted magnetic fields, the University of Cambridge noted, showing that the lines can “reconnect while slipping and flipping around each other.” Before the flare happens, the magnetic field lines line up in an arc across the sun’s surface (photosphere). That phenonemon is called field line footprints.

“In a smooth, non-entangled arc the magnetic energy levels are low, but entanglement will occur naturally as the footpoints move about each other,” the release added. “Their movement is caused as they are jostled from below by powerful convection currents rising and falling beneath the photosphere. As the movement continues, the entanglement of field lines causes magnetic energy to build up.”

When the energy gets to great, the lines let go of the energy, creating the solar flare and coronal mass ejection that can send material streaming away from the sun. A note, this observation was made of an X-class flare — the strongest kind of flare — and scientists say they are not sure if this phenomenon is true of all kinds of flares. That said, the phenomenon would be harder to spot in smaller flares.

You can read more about the research in the Astrophysical Journal or in preprint version on Arxiv. It was led by Jaroslav Dudik, a researcher at the University of Cambridge’s center for mathemetical sciences.

Source: University of Cambridge

Elizabeth Howell

Elizabeth Howell is the senior writer at Universe Today. She also works for Space.com, Space Exploration Network, the NASA Lunar Science Institute, NASA Astrobiology Magazine and LiveScience, among others. Career highlights include watching three shuttle launches, and going on a two-week simulated Mars expedition in rural Utah. You can follow her on Twitter @howellspace or contact her at her website.

Recent Posts

The Giant Planets Migrated Between 60-100 Million Years After the Solar System Formed

Untangling what happened in our Solar System tens or hundreds of millions of years ago…

27 mins ago

Artemis Astronauts Will Deploy New Seismometers on the Moon

Back in the 1960s and 1970s, Apollo astronauts set up a collection of lunar seismometers…

20 hours ago

Ice Deposits on Ceres Might Only Be a Few Thousand Years Old

The dwarf planet Ceres has some permanently dark craters that hold ice. Astronomers thought the…

20 hours ago

The Mystery of Cosmic Rays Deepens

Cosmic rays are high-energy particles accelerated to extreme velocities approaching the speed of light. It…

22 hours ago

NASA Confirms that a Piece of its Battery Pack Smashed into a Florida Home

NASA is in the business of launching things into orbit. But what goes up must…

23 hours ago

Are Titan's Dunes Made of Comet Dust?

A new theory suggests that Titan's majestic dune fields may have come from outer space.…

1 day ago